Quasi-Hamiltonian cycles in k-strong multipartite tournaments

被引:0
作者
Surmacs, Michel [1 ]
机构
[1] Rhein Westfal TH Aachen, Lehrstuhl Math C, D-52062 Aachen, Germany
关键词
Multipartite tournament; Out-arc; Quasi-Hamiltonian cycle;
D O I
10.1016/j.dam.2014.11.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A c-partite tournament is an orientation of a complete c-partite graph. Recently, M. Lu, et al., introduced the concept of quasi-Hamiltonian cycles, that is to say, cycles containing vertices from each partite set, in multipartite tournaments. W.D. Goddard and O.R. Oellermann established that every strong multipartite tournament contains a quasi-Hamiltonian cycle. In this paper, we show that every k-strong (or k-arc-strong) multipartite tournament contains at least k quasi-Hamiltonian cycles. To that end, we prove the following stronger result: Every strong multipartite tournament contains a vertex whose all out-arcs are contained in a quasi-Hamiltonian cycle. Our results include and extend corresponding ones concerning tournaments due to C. Thomassen, as well as M. Goldberg and J.W. Moon. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:253 / 257
页数:5
相关论文
共 10 条
[1]  
Bang-Jensen J., 2000, DIGRAPHS THEORY ALGO, P354
[2]   DICONNECTED ORIENTATIONS AND A CONJECTURE OF LASVERGNAS [J].
BONDY, JA .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1976, 14 (NOV) :277-282
[3]  
GODDARD WD, 1991, GRAPH THEORY COMBINA, V1, P525
[4]   CYCLES IN K-STRONG TOURNAMENTS [J].
GOLDBERG, M ;
MOON, JW .
PACIFIC JOURNAL OF MATHEMATICS, 1972, 40 (01) :89-&
[5]   Weakly quasi-Hamiltonian-set-connected multipartite tournaments [J].
Guo, Yubao ;
Lu, Mei ;
Surmacs, Michel .
DISCRETE APPLIED MATHEMATICS, 2012, 160 (10-11) :1561-1566
[6]   Strongly quasi-Hamiltonian-connected semicomplete multipartite digraphs [J].
Lu, Mei ;
Guo, Yubao ;
Surmacs, Michel .
DISCRETE MATHEMATICS, 2013, 313 (23) :2667-2672
[7]   ON SUBTOURNAMENTS OF A TOURNAMENT [J].
MOON, JW .
CANADIAN MATHEMATICAL BULLETIN, 1966, 9 (03) :297-&
[8]  
Tewes M, 1999, DISCRETE MATH, V197, P769
[9]   HAMILTONIAN-CONNECTED TOURNAMENTS [J].
THOMASSEN, C .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1980, 28 (02) :142-163
[10]   Multipartite tournaments: A survey [J].
Volkmann, Lutz .
DISCRETE MATHEMATICS, 2007, 307 (24) :3097-3129