Highest weight state description of the isotropic spin-1 chain

被引:13
作者
Andres, Markus [1 ]
Schneider, Imke [1 ]
Eggert, Sebastian [1 ]
机构
[1] Univ Kaiserslautern, Dept Phys, D-67663 Kaiserslautern, Germany
来源
PHYSICAL REVIEW B | 2008年 / 77卷 / 01期
关键词
D O I
10.1103/PhysRevB.77.014429
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We introduce an overcomplete highest weight state basis as a calculational tool for the description of the isotropic spin-1 chain with bilinear exchange coupling J(1) and biquadratic coupling J(2). The ground state can be expressed exactly at the three special points in the phase diagram where the Hamiltonian corresponds to a sum of nearest neighbor total spin projection operators (J(1)=0>J(2), J(1)=-J(2)< 0, and J(1)=-J(2)/3>0). In particular, at the phase transition point J(1)=-J(2)< 0, it is possible to exactly compute the ground states, excited states, expectation values, and correlation functions by using the new total spin basis.
引用
收藏
页数:7
相关论文
共 29 条
[1]   RIGOROUS RESULTS ON VALENCE-BOND GROUND-STATES IN ANTIFERROMAGNETS [J].
AFFLECK, I ;
KENNEDY, T ;
LIEB, EH ;
TASAKI, H .
PHYSICAL REVIEW LETTERS, 1987, 59 (07) :799-802
[2]   VALENCE BOND GROUND-STATES IN ISOTROPIC QUANTUM ANTIFERROMAGNETS [J].
AFFLECK, I ;
KENNEDY, T ;
LIEB, EH ;
TASAKI, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 115 (03) :477-528
[4]   EXACT SOLUTION OF THE ONE-DIMENSIONAL ISOTROPIC HEISENBERG CHAIN WITH ARBITRARY SPINS S [J].
BABUJIAN, HM .
PHYSICS LETTERS A, 1982, 90 (09) :479-482
[5]   SPECTRUM OF THE BIQUADRATIC SPIN-1 ANTIFERROMAGNETIC CHAIN [J].
BARBER, MN ;
BATCHELOR, MT .
PHYSICAL REVIEW B, 1989, 40 (07) :4621-4626
[6]   Probable absence of a quadrupolar spin-nematic phase in the bilinear-biquadratic spin-1 chain -: art. no. 054433 [J].
Buchta, K ;
Fáth, G ;
Legeza, O ;
Sólyom, J .
PHYSICAL REVIEW B, 2005, 72 (05)
[7]   EXPERIMENTAL-EVIDENCE FOR THE HALDANE GAP IN A SPIN-1, NEARLY ISOTROPIC, ANTIFERROMAGNETIC CHAIN [J].
BUYERS, WJL ;
MORRA, RM ;
ARMSTRONG, RL ;
HOGAN, MJ ;
GERLACH, P ;
HIRAKAWA, K .
PHYSICAL REVIEW LETTERS, 1986, 56 (04) :371-374
[8]   FLUCTUATIONS IN SPIN NEMATICS [J].
CHUBUKOV, AV .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1990, 2 (06) :1593-1608
[9]   Numerical evidence for multiplicative logarithmic corrections from marginal operators [J].
Eggert, S .
PHYSICAL REVIEW B, 1996, 54 (14) :R9612-R9615
[10]   SEARCH FOR THE NONDIMERIZED QUANTUM NEMATIC PHASE IN THE SPIN-1 CHAIN [J].
FATH, G ;
SOLYOM, J .
PHYSICAL REVIEW B, 1995, 51 (06) :3620-3625