Elements of sub-quantum thermodynamics: quantum motion as ballistic diffusion

被引:14
|
作者
Groessing, G. [1 ]
Fussy, S. [1 ]
Pascasio, J. Mesa [1 ]
Schwabl, H. [1 ]
机构
[1] Akademiehof, Austrian Inst Nonlinear Studies, A-1010 Vienna, Austria
来源
5TH INTERNATIONAL WORKSHOP DICE2010: SPACE-TIME-MATTER - CURRENT ISSUES IN QUANTUM MECHANICS AND BEYOND | 2011年 / 306卷
关键词
SCHRODINGER-EQUATION; MECHANICS;
D O I
10.1088/1742-6596/306/1/012046
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By modelling quantum systems as emerging from a (classical) sub-quantum thermodynamics, the quantum mechanical "decay of the wave packet" is shown to simply result from sub-quantum diffusion with a specific diffusion coefficient varying in time due to a particle's changing thermal environment. It is thereby proven that free quantum motion strictly equals ballistic diffusion. The exact quantum mechanical trajectory distributions and the velocity field of the Gaussian wave packet are thus derived solely from classical physics. Moreover, also quantum motion in a linear (e.g., gravitational) potential is shown to equal said ballistic diffusion. Quantitative statements on the trajectories' characteristic behaviours are obtained which provide a detailed "micro-causal" explanation in full accordance with momentum conservation.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Motion Center in Quantum Wave Packet Dynamics
    Liu, Qian
    Yu, Yanxia
    Pan, Hui
    Wang, Z. S.
    ACTA PHYSICA POLONICA A, 2015, 127 (03) : 761 - 766
  • [32] Classical and quantum motion in an inverse square potential
    Avila-Aoki, M.
    Cisneros, C.
    Martinez-y-Romero, R. P.
    Nunez-Yepez, H. N.
    Salas-Brito, A. L.
    PHYSICS LETTERS A, 2009, 373 (04) : 418 - 421
  • [33] Adjoint master equation for quantum Brownian motion
    Carlesso, Matteo
    Bassi, Angelo
    PHYSICAL REVIEW A, 2017, 95 (05)
  • [34] Quantum dynamics of a dissipative and confined cyclotron motion
    Kumar, Jishad
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 393 : 182 - 206
  • [35] Derivation and application of quantum Hamilton equations of motion
    Koeppe, J.
    Grecksch, W.
    Paul, W.
    ANNALEN DER PHYSIK, 2017, 529 (03)
  • [36] Fluctuations and persistence in quantum diffusion on regular lattices
    Ma, Cheng
    Malik, Omar
    Korniss, G.
    PHYSICAL REVIEW E, 2025, 111 (02)
  • [37] Classical diffusion of a quantum particle in a noisy environment
    Amir, Ariel
    Lahini, Yoav
    Perets, Hagai B.
    PHYSICAL REVIEW E, 2009, 79 (05):
  • [38] QUANTUM-MECHANICS AS A CLASSICAL DIFFUSION PROCESS
    COLLINS, RE
    FOUNDATIONS OF PHYSICS LETTERS, 1992, 5 (01) : 63 - 69
  • [39] From quantum motion to classical motion-seeking the lost reality
    Shan, G
    PHYSICS ESSAYS, 2001, 14 (01) : 37 - 48
  • [40] Quantum-mechanical properties of block elements in nanomaterials
    Babeshko, V. A.
    Evdokimova, O. V.
    Babeshko, O. M.
    DOKLADY PHYSICS, 2010, 55 (11) : 568 - 572