Preparation of a γ-Fe2O3/Ag Nanowire Coaxial Nanocable for High-Performance Lithium-Ion Batteries

被引:23
作者
Geng, Hongbo [1 ,2 ,3 ]
Ge, Danhua [1 ,2 ]
Lu, Shuanglong [1 ,2 ]
Wang, Jiaqing [1 ,2 ]
Ye, Zhengmao [1 ,2 ]
Yang, Yonggang [1 ,2 ]
Zheng, Junwei [1 ,2 ,3 ]
Gu, Hongwei [1 ,2 ]
机构
[1] Soochow Univ, Key Lab Organ Synth Jiangsu Prov, Coll Chem Chem Engn & Mat Sci, Suzhou 215123, Peoples R China
[2] Soochow Univ, Collaborat Innovat Ctr Suzhou Nano Sci & Technol, Suzhou 215123, Peoples R China
[3] Soochow Univ, Coll Phys Optolect & Energy, Suzhou 215006, Peoples R China
基金
中国国家自然科学基金;
关键词
anodes; iron; lithium; nanostructures; silver; HIGH-CAPACITY ANODES; ALPHA-FE2O3; NANOSTRUCTURES; HOLLOW NANOSTRUCTURES; OXIDE NANOPARTICLES; CARBON NANOFIBERS; STORAGE; FABRICATION; COMPOSITE; SPHERES; NANOSHEETS;
D O I
10.1002/chem.201500819
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this study, we report the design and synthesis of a silver nanowire-gamma-Fe2O3 coaxial nanocable architecture (Ag NWs@gamma-Fe2O3 nanocable) through mild oxidation of [Fe(CO)(5)] on the surface of silver nanowires followed by a calcination process. After optimization of the structural design, the Ag NWs@gamma-Fe2O3 nanocable could deliver superior lithium storage performance in terms of high reversible capacity, good rate performance, and excellent stability, such as a high reversible capacity of about 890 mAhg(-1) after 60 cycles at a current rate of 0.1 C (1.0 C= 1005 mAg(-1)). The re-versible capacity remains as high as about 550 mAhg(-1) even at a high current rate of 2.0 C. This dramatic performance is mainly attributed to the smart coaxial design, which can not only alleviate the large volume change and prevent the aggregation of gamma-Fe2O3 nanoparticles, but also enables good conductivity and thus enhances fast charge transfer. The unique structural features of the Ag NWs@gamma-gFe(2)O(3) nanocable represent a promising anode material in lithium-ion battery applications.
引用
收藏
页码:11129 / 11133
页数:5
相关论文
共 50 条
[1]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[4]   Preparation of MoS2-Coated Three-Dimensional Graphene Networks for High-Performance Anode Material in Lithium-Ion Batteries [J].
Cao, Xiehong ;
Shi, Yumeng ;
Shi, Wenhui ;
Rui, Xianhong ;
Yan, Qingyu ;
Kong, Jing ;
Zhang, Hua .
SMALL, 2013, 9 (20) :3433-3438
[5]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[6]   Reversible Lithium-Ion Storage in Silver-Treated Nanoscale Hollow Porous Silicon Particles [J].
Chen, Dongyun ;
Mei, Xiao ;
Ji, Ge ;
Lu, Meihua ;
Xie, Jianping ;
Lu, Jianmei ;
Lee, Jim Yang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (10) :2409-2413
[7]  
Chen Dongyun., 2012, ANGEW CHEMIE, V124, P2459
[8]   α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications [J].
Chen, J ;
Xu, LN ;
Li, WY ;
Gou, XL .
ADVANCED MATERIALS, 2005, 17 (05) :582-+
[9]   TiO2 and SnO2@TiO2 hollow spheres assembled from anatase TiO2 nanosheets with enhanced lithium storage properties [J].
Chen, Jun Song ;
Luan, Deyan ;
Li, Chang Ming ;
Boey, Freddy Yin Chiang ;
Qiao, Shizhang ;
Lou, Xiong Wen .
CHEMICAL COMMUNICATIONS, 2010, 46 (43) :8252-8254
[10]   Top-Down Fabrication of α-Fe2O3 Single-Crystal Nanodiscs and Microparticles with Tunable Porosity for Largely Improved Lithium Storage Properties [J].
Chen, Jun Song ;
Zhu, Ting ;
Yang, Xiao Hua ;
Yang, Hua Gui ;
Lou, Xiong Wen .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (38) :13162-13164