An age-dependent population equation with delayed birth process

被引:38
作者
Piazzera, S [1 ]
机构
[1] Univ Tubingen, Fak Math, Inst Math, D-72076 Tubingen, Germany
关键词
age dependent population equation; boundary delays; characteristic equation;
D O I
10.1002/mma.462
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Within a semigroup framework, we discuss well posedness and qualitative behaviour of an age-dependent population equation with delay in the birth process. Using positivity and Perron-Frobenius theory we obtain an explicit stability criterion. Copyright (C) 2004 John Wiley Sons, Ltd.
引用
收藏
页码:427 / 439
页数:13
相关论文
共 23 条
  • [1] DYNAMICS OF INTERACTING POPULATIONS
    AUSLANDER, DM
    OSTER, GF
    HUFFAKER, CB
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1974, 297 (05): : 345 - 376
  • [2] Semigroups and linear partial differential equations with delay
    Bátkai, A
    Piazzera, S
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 264 (01) : 1 - 20
  • [3] BATKAI A, UNPUB SEMIGROUPS DEL
  • [4] DESCH GW, 1989, LECTURE NOTES PURE A, V116, P125
  • [5] NON-LINEAR AGE-DEPENDENT POPULATION-GROWTH WITH HISTORY-DEPENDENT BIRTH-RATE
    DIBLASIO, G
    [J]. MATHEMATICAL BIOSCIENCES, 1979, 46 (3-4) : 279 - 291
  • [6] Spectral theory and generator property for one-sided coupled operator matrices
    Engel, KJ
    [J]. SEMIGROUP FORUM, 1999, 58 (02) : 267 - 295
  • [7] Engel KJ., 2000, One-Parameter Semigroups for Linear Evolution Equations, GTM 194
  • [8] ENGEL KJ, 1996, UNPUB OPERATOR MATRI
  • [9] GEINER G, 1991, LECT NOTES PURE APPL, V135, P193
  • [10] GREINER G, 1984, LECT NOTES MATH, V1076, P86