A Nitsche-based domain decomposition method for hypersingular integral equations

被引:19
作者
Chouly, Franz [2 ]
Heuer, Norbert [1 ]
机构
[1] Pontificia Univ Catolica Chile, Fac Math, Santiago, Chile
[2] Univ Franche Comte, CNRS, UMR 6623, Lab Math Besancon, F-25030 Besancon, France
关键词
FINITE-ELEMENT-METHOD; LAGRANGE MULTIPLIERS; BOUNDARY; MORTAR;
D O I
10.1007/s00211-012-0451-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce and analyze a Nitsche-based domain decomposition method for the solution of hypersingular integral equations. This method allows for discretizations with non-matching grids without the necessity of a Lagrangian multiplier, as opposed to the traditional mortar method. We prove its almost quasi-optimal convergence and underline the theory by a numerical experiment.
引用
收藏
页码:705 / 729
页数:25
相关论文
共 38 条
[1]  
[Anonymous], ELLIPTIC SYSTEMS BOU
[2]  
[Anonymous], 1999, NUMERICAL MATH SCI C
[3]   AN INTERIOR PENALTY FINITE-ELEMENT METHOD WITH DISCONTINUOUS ELEMENTS [J].
ARNOLD, DN .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (04) :742-760
[4]   ROBIN BASED SEMI-IMPLICIT COUPLING IN FLUID-STRUCTURE INTERACTION: STABILITY ANALYSIS AND NUMERICS [J].
Astorino, Matteo ;
Chouly, Franz ;
Fernandez, Miguel A. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (06) :4041-4065
[5]   BOUNDARY LAGRANGE MULTIPLIERS IN FINITE-ELEMENT METHODS - ERROR ANALYSIS IN NATURAL NORMS [J].
BARBOSA, HJC ;
HUGHES, TJR .
NUMERISCHE MATHEMATIK, 1992, 62 (01) :1-15
[6]   THE FINITE-ELEMENT METHOD WITH LAGRANGE MULTIPLIERS ON THE BOUNDARY - CIRCUMVENTING THE BABUSKA-BREZZI CONDITION [J].
BARBOSA, HJC ;
HUGHES, TJR .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1991, 85 (01) :109-128
[7]   A finite element method for domain decomposition with non-matching grids [J].
Becker, R ;
Hansbo, P ;
Stenberg, R .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2003, 37 (02) :209-225
[8]   A Nitsche extended finite element method for incompressible elasticity with discontinuous modulus of elasticity [J].
Becker, Roland ;
Burman, Erik ;
Hansbo, Peter .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (41-44) :3352-3360
[9]  
Ben Belgacem F, 1999, NUMER MATH, V84, P173, DOI 10.1007/s002119900100
[10]  
BERNARDI C, 1993, NATO ADV SCI INST SE, V384, P269