Laboratory synthesis of carbon nanostructured materials using natural gas

被引:3
作者
Kostakova, Eva [1 ]
Gregr, Jan [1 ]
Meszaros, Laszlo [2 ]
Chotebor, Michal [1 ]
Nagy, Zsombor K. [2 ]
Pokorny, Pavel [1 ]
Lukas, David [1 ]
机构
[1] Tech Univ Liberec, Liberec, Czech Republic
[2] Budapest Univ Technol & Econ, Budapest, Hungary
关键词
Carbon nanotubes; Carbon nanostructured materials; Chemical vapor deposition; Raman spectroscopy; CHEMICAL-VAPOR-DEPOSITION; NANOTUBES; SINGLE; CVD;
D O I
10.1016/j.matlet.2012.03.101
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The article describes a simple set-up of chemical vapor deposition (CVD) method for laboratory production of carbon nanostructures including carbon nanotubes. Here we show that natural gas can be utilized as a carbon source for synthesis of carbon nanomaterials on unconventional substrates with integrated catalysts as rocks, metal plates and metal wires by CVD method. Several types of carbon nanomaterial structures not only carbon nanotubes were recognized during these syntheses. Optimal conditions for production of long multiwalled carbon nanotubes were obtained. Diameters of these nanotubes are around hundred nanometers. Raman spectroscopy and scanning electron microscopy were used for the study of produced nanostructures. The available utilization of these carbon nanotubes or nanostructures on the unconventional substrates can be in special active filtration, substrates for catalytic chemical and biochemical reactions, etc. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:35 / 38
页数:4
相关论文
共 11 条
[1]  
Bhushan B., 2010, Springer Handbook of Nanotechnology
[2]   Production of single and multi-walled carbon nanotubes using natural gas as a precursor compound [J].
Bonadiman, R. ;
Lima, M. D. ;
de Andrade, M. J. ;
Bergmann, C. P. .
JOURNAL OF MATERIALS SCIENCE, 2006, 41 (22) :7288-7295
[3]   Fluidized bed catalytic chemical vapor deposition synthesis of carbon nanotubes-A review [J].
Danafar, Firoozeh ;
Fakhru'l-Razi, A. ;
Salleh, Mohd Amran Mohd ;
Biak, Dayang Radiah Awang .
CHEMICAL ENGINEERING JOURNAL, 2009, 155 (1-2) :37-48
[4]   C2H6 as an active carbon source for a large scale synthesis of carbon nanotubes by chemical vapour deposition [J].
Gulino, G ;
Vieira, R ;
Amadou, J ;
Nguyen, P ;
Ledoux, MJ ;
Galvagno, S ;
Centi, G ;
Cuong, PH .
APPLIED CATALYSIS A-GENERAL, 2005, 279 (1-2) :89-97
[5]   Synthesis of carbon nanostructured materials using LPG [J].
Ndungu, P. ;
Godongwana, Z. G. ;
Petrik, L. F. ;
Nechaev, A. ;
Liao, S. ;
Linkov, V. .
MICROPOROUS AND MESOPOROUS MATERIALS, 2008, 116 (1-3) :593-600
[6]   Catalytic CVD production of carbon nanotubes using ethanol [J].
Ortega-Cervantez, G ;
Rueda-Morales, G ;
Ortiz-López, J .
MICROELECTRONICS JOURNAL, 2005, 36 (3-6) :495-498
[7]   Dispersive Raman spectra observed in graphite and single wall carbon nanotubes [J].
Saito, R ;
Jorio, A ;
Souza, AG ;
Grueneis, A ;
Pimenta, MA ;
Dresselhaus, G ;
Dresselhaus, MS .
PHYSICA B-CONDENSED MATTER, 2002, 323 (1-4) :100-106
[8]   Effects of partial and total methane flows on the yield and structural characteristics of MWCNTs produced by CVD [J].
Valles, C. ;
Perez-Mendoza, M. ;
Maser, W. K. ;
Martinez, M. T. ;
Alvarez, L. ;
Sauvajol, J. L. ;
Benito, A. M. .
CARBON, 2009, 47 (04) :998-1004
[9]   CVD growth and field electron emission of aligned carbon nanotubes on oxidized Inconel plates without addition of catalyst [J].
Yi, W. ;
Yang, Q. .
DIAMOND AND RELATED MATERIALS, 2010, 19 (7-9) :870-874
[10]   Mechanical performance of ozone functionalized MWCNTs/PC nanocomposites [J].
Zhang, Z. ;
Peng, K. ;
Chen, Y. .
EXPRESS POLYMER LETTERS, 2011, 5 (06) :516-525