Semilocal Convergence of a Class of Modified Super-Halley Methods in Banach Spaces

被引:8
作者
Wang, Xiuhua [1 ]
Kou, Jisheng [1 ]
Gu, Chuanqing [2 ]
机构
[1] Xiaogan Univ, Sch Math & Stat, Xiaogan 432100, Hubei, Peoples R China
[2] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
关键词
Nonlinear equations in Banach spaces; Semilocal convergence; Recurrence relations; Super-Halley method; Iterative method; RATIONAL CUBIC METHODS; RECURRENCE RELATIONS; 4TH-ORDER CONVERGENCE;
D O I
10.1007/s10957-012-9985-9
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we consider the semilocal convergence of a class of modified super-Halley methods for solving nonlinear equations in Banach spaces. The semilocal convergence of this class of methods is established by using recurrence relations. We construct a system of recurrence relations for the methods, and based on it, we prove an existence-uniqueness theorem that shows the -order of the methods.
引用
收藏
页码:779 / 793
页数:15
相关论文
共 14 条
  • [11] SEMILOCAL CONVERGENCE OF A STIRLING-LIKE METHOD IN BANACH SPACES
    Parhi, S. K.
    Gupta, D. K.
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2010, 7 (02) : 215 - 228
  • [12] Recurrence relations for a Newton-like method in Banach spaces
    Parida, P. K.
    Gupta, D. K.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 206 (02) : 873 - 887
  • [13] Semilocal convergence of a multipoint fourth-order super-Halley method in Banach spaces
    Wang, Xiuhua
    Gu, Chuanqing
    Kou, Jisheng
    [J]. NUMERICAL ALGORITHMS, 2011, 56 (04) : 497 - 516
  • [14] Semilocal convergence of a sixth-order Jarratt method in Banach spaces
    Wang, Xiuhua
    Kou, Jisheng
    Gu, Chuanqing
    [J]. NUMERICAL ALGORITHMS, 2011, 57 (04) : 441 - 456