Steklov convexification and a trajectory method for global optimization of multivariate quartic polynomials

被引:3
作者
Burachik, Regina S. [1 ]
Kaya, C. Yalcin [1 ]
机构
[1] Univ South Australia, Math, UniSA STEM, Mawson Lakes, SA 5095, Australia
关键词
Global optimization; Multivariate quartic polynomial; Steklov smoothing; Steklov convexification; Trajectory methods; MINIMIZATION; NONSMOOTH;
D O I
10.1007/s10107-020-01536-8
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The Steklov function mu(f)(., t) is defined to average a continuous function f at each point of its domain by using a window of size given by t > 0. It has traditionally been used to approximate f smoothly with small values of t. In this paper, we first find a concise and useful expression for mu(f) for the case when f is a multivariate quartic polynomial. Then we show that, for large enough t, mu(f)(., t) is convex; in other words, mu(f)(., t) convexifies f. We provide an easy-to-compute formula for t with which mu(f) convexifies certain classes of polynomials. We present an algorithm which constructs, via an ODE involving mu(f )a trajectory x(t) emanating from the minimizer of the convexified f and ending at x(0), an estimate of the global minimizer of f. For a family of quartic polynomials, we provide an estimate for the size of a ball that contains all its global minimizers. Finally, we illustrate the working of our method by means of numerous computational examples.
引用
收藏
页码:187 / 216
页数:30
相关论文
共 50 条
  • [41] The GLOBAL optimization method revisited
    Tibor Csendes
    László Pál
    J. Oscar H. Sendín
    Julio R. Banga
    Optimization Letters, 2008, 2 : 445 - 454
  • [42] Parametric Method for Global Optimization
    S. De Marchi
    I. Raykov
    Journal of Optimization Theory and Applications, 2006, 130 : 411 - 430
  • [43] Parametric method for global optimization
    De Marchi, S.
    Raykov, I.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2006, 130 (03) : 409 - 428
  • [44] The Method of Moments in Global Optimization
    R. Meziat
    Journal of Mathematical Sciences, 2003, 116 (3) : 3303 - 3324
  • [45] The GLOBAL optimization method revisited
    Csendes, Tibor
    Pal, Laszlo
    Sendin, J. Oscar H.
    Banga, Julio R.
    OPTIMIZATION LETTERS, 2008, 2 (04) : 445 - 454
  • [46] New quadratic lower bound for multivariate functions in global optimization
    Ouanes, Mohand
    Hoai An Le Thi
    Trong Phuc Nguyen
    Zidna, Ahmed
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2015, 109 : 197 - 211
  • [47] An adaptive, multivariate partitioning algorithm for global optimization of nonconvex programs
    Harsha Nagarajan
    Mowen Lu
    Site Wang
    Russell Bent
    Kaarthik Sundar
    Journal of Global Optimization, 2019, 74 : 639 - 675
  • [48] A filled function method for global optimization with inequality constraints
    Lin, Hongwei
    Wang, Yuping
    Gao, Yuelin
    Wang, Xiaoli
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (02) : 1524 - 1536
  • [49] A global optimization algorithm for multivariate functions with Lipschitzian first derivatives
    Gergel, VP
    JOURNAL OF GLOBAL OPTIMIZATION, 1997, 10 (03) : 257 - 281
  • [50] An adaptive, multivariate partitioning algorithm for global optimization of nonconvex programs
    Nagarajan, Harsha
    Lu, Mowen
    Wang, Site
    Bent, Russell
    Sundar, Kaarthik
    JOURNAL OF GLOBAL OPTIMIZATION, 2019, 74 (04) : 639 - 675