Extremal solutions for generalized Caputo fractional differential equations with Steiltjes-type fractional integro-initial conditions

被引:25
作者
Alsaedi, Ahmed [1 ]
Ahmad, Bashir [1 ]
Alghanmi, Madeaha [1 ]
机构
[1] King Abdulaziz Univ, Dept Math, Fac Sci, Nonlinear Anal & Appl Math NAAM Res Grp, POB 80203, Jeddah 21589, Saudi Arabia
关键词
Differential equation; Caputo-type generalized fractional derivative; Steiltjes integral; Existence; Fixed point; BOUNDARY-VALUE-PROBLEMS; POSITIVE SOLUTIONS; DERIVATIVES; SYSTEM;
D O I
10.1016/j.aml.2018.12.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a new fractional-order initial value problem involving a Caputo-type generalized fractional derivative and a Steiltjes type fractional integral. Extremal solutions for the given problem are obtained by monotone iterative method. An example illustrating the main result is presented. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:113 / 120
页数:8
相关论文
共 21 条
  • [1] Time Fractional Schrodinger Equation Revisited
    Achar, B. N. Narahari
    Yale, Bradley T.
    Hanneken, John W.
    [J]. ADVANCES IN MATHEMATICAL PHYSICS, 2013, 2013
  • [2] Agarwal R. P., 2017, BOUND VALUE PROBL, V2015, P138
  • [3] Fractional differential equations involving generalized derivative with Stieltjes and fractional integral boundary conditions
    Ahmad, Bashir
    Alghanmi, Madeaha
    Ntouyas, Sotiris K.
    Alsaedi, Ahmed
    [J]. APPLIED MATHEMATICS LETTERS, 2018, 84 : 111 - 117
  • [4] EXISTENCE OF SOLUTIONS FOR A SYSTEM OF FRACTIONAL DIFFERENTIAL EQUATIONS WITH COUPLED NONLOCAL BOUNDARY CONDITIONS
    Ahmad, Bashir
    Luca, Rodica
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (02) : 423 - 441
  • [5] ANALYTICAL SOLUTIONS FOR MULTI-TERM TIME-SPACE FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS WITH NONLOCAL DAMPING TERMS
    Ding, Xiao-Li
    Nieto, Juan J.
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (02) : 312 - 335
  • [6] On the Extremal Solution for a Nonlinear Boundary Value Problems of Fractional p-Laplacian Differential Equation
    Ding, Youzheng
    Wei, Zhongli
    [J]. FILOMAT, 2016, 30 (14) : 3771 - 3778
  • [7] Heikkila S., 1994, MONOTONE ITERATIVE T
  • [8] Nonexistence of positive solutions for a system of coupled fractional boundary value problems
    Henderson, Johnny
    Luca, Rodica
    [J]. BOUNDARY VALUE PROBLEMS, 2015,
  • [9] On the generalized fractional derivatives and their Caputo modification
    Jarad, Fahd
    Abdeljawad, Thabet
    Baleanu, Dumitru
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (05): : 2607 - 2619
  • [10] Katugampola UN, 2014, BULL MATH ANAL APPL, V6, P1