STOCHASTIC HEAT EQUATION WITH ROUGH DEPENDENCE IN SPACE

被引:44
作者
Hu, Yaozhong [1 ]
Huang, Jingyu [1 ]
Le, Khoa [1 ]
Nualart, David [1 ]
Tindel, Samy [2 ]
机构
[1] Univ Kansas, Dept Math, 405 Snow Hall, Lawrence, KS 66045 USA
[2] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
Stochastic heat equation; fractional Brownian motion; Feynman-Kac formula; Wiener chaos expansion; intermittency; EXISTENCE;
D O I
10.1214/16-AOP1172
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper studies the nonlinear one-dimensional stochastic heat equation driven by a Gaussian noise which is white in time and which has the covariance of a fractional Brownian motion with Hurst parameter H is an element of (1/4, 1/2) in the space variable. The existence and uniqueness of the solution u are proved assuming the nonlinear coefficient sigma(u) is differentiable with a Lipschitz derivative and sigma(0) = 0.
引用
收藏
页码:4561 / 4616
页数:56
相关论文
共 15 条
[11]   The Kolmogorov-Riesz compactness theorem [J].
Hanche-Olsen, Harald ;
Holden, Helge .
EXPOSITIONES MATHEMATICAE, 2010, 28 (04) :385-394
[12]   Stochastic evolution equations with a spatially homogeneous Wiener process [J].
Peszat, S ;
Zabczyk, J .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1997, 72 (02) :187-204
[13]   Integration questions related to fractional Brownian motion [J].
Pipiras, V ;
Taqqu, MS .
PROBABILITY THEORY AND RELATED FIELDS, 2000, 118 (02) :251-291
[14]  
Samko A. A., 1993, Fractional Integrals andDerivatives: Theory and Applications
[15]   MORREY SPACE [J].
ZORKO, CT .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 98 (04) :586-592