Electron Dynamics Within the Electron Diffusion Region of Asymmetric Reconnection

被引:12
|
作者
Argall, M. R. [1 ]
Paulson, K. [1 ]
Alm, L. [1 ]
Rager, A. [2 ]
Dorelli, J. [2 ]
Shuster, J. [2 ]
Wang, S. [2 ]
Torbert, R. B. [1 ,3 ]
Vaith, H. [1 ]
Dors, I. [1 ]
Chutter, M. [1 ]
Farrugia, C. [1 ]
Burch, J. [3 ]
Pollock, C. [2 ]
Giles, B. [2 ]
Gershman, D. [2 ]
Lavraud, B. [4 ]
Russell, C. T. [5 ]
Strangeway, R. [5 ]
Magnes, W. [6 ]
Lindqvist, P. -A. [7 ]
Khotyaintsev, Yu. V. [8 ]
Ergun, R. E. [9 ]
Ahmadi, N. [9 ]
机构
[1] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA
[2] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA
[3] Southwest Res Inst, San Antonio, TX USA
[4] Univ Toulouse, CNRS, Inst Rech Astrophys & Planetol, UPS, Toulouse, France
[5] Univ Calif Los Angeles, Earth Planetary & Space Sci, Los Angeles, CA USA
[6] Austrian Acad Sci, Space Res Inst, Graz, Austria
[7] KTH Royal Inst Technol, Stockholm, Sweden
[8] Swedish Inst Space Phys, Uppsala, Sweden
[9] Univ Colorado Boulder, Boulder, CO USA
关键词
MAGNETIC RECONNECTION; MAGNETOSPHERIC MULTISCALE; MAGNETOPAUSE RECONNECTION; X LINE; MMS; WAVES; ACCELERATION; PARALLEL; INSTRUMENT; CURRENTS;
D O I
10.1002/2017JA024524
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We investigate the agyrotropic nature of electron distribution functions and their substructure to illuminate electron dynamics in a previously reported electron diffusion region (EDR) event. In particular, agyrotropy is examined as a function of energy to reveal detailed finite Larmor radius effects for the first time. It is shown that the previously reported approximate to 66eV agyrotropic "crescent" population that has been accelerated as a result of reconnection is evanescent in nature because it mixes with a denser, gyrotopic background. Meanwhile, accelerated agyrotropic populations at 250 and 500eV are more prominent because the background plasma at those energies is more tenuous. Agyrotropy at 250 and 500eV is also more persistent than at 66eV because of finite Larmor radius effects; agyrotropy is observed 2.5 ion inertial lengths from the EDR at 500eV, but only in close proximity to the EDR at 66eV. We also observe linearly polarized electrostatic waves leading up to and within the EDR. They have wave normal angles near 90 degrees, and their occurrence and intensity correlate with agyrotropy. Within the EDR, they modulate the flux of 500eV electrons travelling along the current layer. The net electric field intensifies the reconnection current, resulting in a flow of energy from the fields into the plasma. Plain Language Summary The process of reconnection involves an explosive transfer of magnetic energy into particle energy. When energetic particles contact modern technology such as satellites, cell phones, or other electronic devices, they can cause random errors and failures. Exactly how particles are energized via reconnection, however, is still unknown. Fortunately, the Magnetospheric Multiscale mission is finally able to detect and analyze reconnection processes. One recent finding is that energized particles take on a crescent-shaped configuration in the vicinity of reconnection and that this crescent shape is related to the energy conversion process. In our paper, we explain why the crescent shape has not been observed until now and inspect particle motions to determine what impact it has on energy conversion. When reconnection heats the plasma, the crescent shape forms from the cool, tenuous particles. As plasmas from different regions mix, dense, nonheated plasma obscures the crescent shape in our observations. The highest-energy particle population created by reconnection, though, also contains features of the crescent shape that are more persistent but appear less dramatically in the data.
引用
收藏
页码:146 / 162
页数:17
相关论文
共 50 条
  • [21] Electron-scale dynamics of the diffusion region during symmetric magnetic reconnection in space
    Torbert, R. B.
    Burch, J. L.
    Phan, T. D.
    Hesse, M.
    Argall, M. R.
    Shuster, J.
    Ergun, R. E.
    Alm, L.
    Nakamura, R.
    Genestreti, K. J.
    Gershman, D. J.
    Paterson, W. R.
    Turner, D. L.
    Cohen, I.
    Giles, B. L.
    Pollock, C. J.
    Wang, S.
    Chen, L. -J.
    Stawarz, J. E.
    Eastwood, J. P.
    Hwang, K. J.
    Farrugia, C.
    Dors, I.
    Vaith, H.
    Mouikis, C.
    Ardakani, A.
    Mauk, B. H.
    Fuselier, S. A.
    Russell, C. T.
    Strangeway, R. J.
    Moore, T. E.
    Drake, J. F.
    Shay, M. A.
    Khotyaintsev, Yuri V.
    Lindqvist, P. -A.
    Baumjohann, W.
    Wilder, F. D.
    Ahmadi, N.
    Dorelli, J. C.
    Avanov, L. A.
    Oka, M.
    Baker, D. N.
    Fennell, J. F.
    Blake, J. B.
    Jaynes, A. N.
    Le Contel, O.
    Petrinec, S. M.
    Lavraud, B.
    Saito, Y.
    SCIENCE, 2018, 362 (6421) : 1391 - +
  • [22] Electron jet of asymmetric reconnection
    Khotyaintsev, Yu. V.
    Graham, D. B.
    Norgren, C.
    Eriksson, E.
    Li, W.
    Johlander, A.
    Vaivads, A.
    Andre, M.
    Pritchett, P. L.
    Retino, A.
    Phan, T. D.
    Ergun, R. E.
    Goodrich, K.
    Lindqvist, P. -A.
    Marklund, G. T.
    Le Contel, O.
    Plaschke, F.
    Magnes, W.
    Strangeway, R. J.
    Russell, C. T.
    Vaith, H.
    Argall, M. R.
    Kletzing, C. A.
    Nakamura, R.
    Torbert, R. B.
    Paterson, W. R.
    Gershman, D. J.
    Dorelli, J. C.
    Avanov, L. A.
    Lavraud, B.
    Saito, Y.
    Giles, B. L.
    Pollock, C. J.
    Turner, D. L.
    Blake, J. D.
    Fennell, J. F.
    Jaynes, A.
    Mauk, B. H.
    Burch, J. L.
    GEOPHYSICAL RESEARCH LETTERS, 2016, 43 (11) : 5571 - 5580
  • [23] Electron dynamics surrounding the X line in asymmetric magnetic reconnection
    Zenitani, Seiji
    Hasegawa, Hiroshi
    Nagai, Tsugunobu
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2017, 122 (07) : 7396 - 7413
  • [24] On the electron dynamics during island coalescence in asymmetric magnetic reconnection
    Cazzola, E.
    Innocenti, M. E.
    Markidis, S.
    Goldman, M. V.
    Newman, D. L.
    Lapenta, G.
    PHYSICS OF PLASMAS, 2015, 22 (09)
  • [25] Electron magnetohydrodynamics Grad-Shafranov reconstruction of the magnetic reconnection electron diffusion region
    Korovinskiy, D.
    Panov, E.
    Nakamura, R.
    Kiehas, S.
    Hosner, M.
    Schmid, D.
    Ivanov, I.
    FRONTIERS IN ASTRONOMY AND SPACE SCIENCES, 2023, 10
  • [26] Energy Conversion and Electron Acceleration in the Magnetopause Reconnection Diffusion Region
    Pritchard, K. R.
    Burch, J. L.
    Fuselier, S. A.
    Webster, J. M.
    Torbert, R. B.
    Argall, M. R.
    Broll, J.
    Genestreti, K. J.
    Giles, B. L.
    Le Contel, O.
    Mukherjee, J.
    Phan, T. D.
    Rager, A. C.
    Russell, C. T.
    Strangeway, R. J.
    GEOPHYSICAL RESEARCH LETTERS, 2019, 46 (17-18) : 10274 - 10282
  • [27] Magnetospheric Multiscale Dayside Reconnection Electron Diffusion Region Events
    Webster, J. M.
    Burch, J. L.
    Reiff, P. H.
    Daou, A. G.
    Genestreti, K. J.
    Graham, D. B.
    Torbert, R. B.
    Ergun, R. E.
    Sazykin, S. Y.
    Marshall, A.
    Allen, R. C.
    Chen, L. -J.
    Wang, S.
    Phan, T. D.
    Giles, B. L.
    Moore, T. E.
    Fuselier, S. A.
    Cozzani, G.
    Russell, C. T.
    Eriksson, S.
    Rager, A. C.
    Broll, J. M.
    Goodrich, K.
    Wilder, F.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2018, 123 (06) : 4858 - 4878
  • [28] Kinetic Structure of the Electron Diffusion Region in Antiparallel Magnetic Reconnection
    Ng, J.
    Egedal, J.
    Le, A.
    Daughton, W.
    Chen, L. -J.
    PHYSICAL REVIEW LETTERS, 2011, 106 (06)
  • [29] Particle description of the electron diffusion region in collisionless magnetic reconnection
    Fujimoto, Keizo
    Sydora, Richard D.
    PHYSICS OF PLASMAS, 2009, 16 (11) : 112309
  • [30] Capsule Electron Distributions Near the Diffusion Region of Magnetic Reconnection
    Ren, Yong
    Dai, Lei
    Wang, Chi
    Lavraud, Benoit
    Escoubet, C. Philippe
    Burch, James L.
    GEOPHYSICAL RESEARCH LETTERS, 2024, 51 (23)