Collective sparse symmetric non-negative matrix factorization for identifying overlapping communities in resting-state brain functional networks

被引:21
作者
Li, Xuan [1 ,2 ]
Gan, John Q. [1 ,2 ]
Wang, Haixian [1 ]
机构
[1] Southeast Univ, Key Lab Child Dev & Learning Sci, Minist Educ, Sch Biol Sci & Med Engn, Nanjing 210096, Jiangsu, Peoples R China
[2] Univ Essex, Sch Comp Sci & Elect Engn, Colchester CO4 3SQ, Essex, England
基金
中国国家自然科学基金;
关键词
Non-negative matrix factorization; Overlapping communities; Resting state networks; Inter-subject variability; Test-retest reliability; Resting state fMRI; TEST-RETEST RELIABILITY; DEFAULT-MODE; ALZHEIMERS-DISEASE; CONNECTIVITY; FMRI; ORGANIZATION; PATTERNS; MRI; ACTIVATIONS; SEGREGATION;
D O I
10.1016/j.neuroimage.2017.11.003
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Resting-state functional magnetic resonance imaging (rs-fMRI) provides a valuable tool to study spontaneous brain activity. Using rs-fMRI, researchers have extensively studied the organization of the brain functional network and found several consistent communities consisting of functionally connected but spatially separated brain regions across subjects. However, increasing evidence in many disciplines has shown that most realistic complex networks have overlapping community structure. Only recently has the overlapping community structure drawn increasing interest in the domain of brain network studies. Another issue is that the inter-subject variability is often not directly reflected in the process of community detection at the group level. In this paper, we propose a novel method called collective sparse symmetric non-negative matrix factorization (cssNMF) to address these issues. The cssNMF approach identifies the group-level overlapping communities across subjects and in the meantime preserves the information of individual variation in brain functional network organization. To comprehensively validate cssNMF, a simulated fMRI dataset with ground-truth, a real rs-fMRI dataset with two repeated sessions and another different real rs-fMRI dataset have been used for performance comparison in the experiment. Experimental results show that the proposed cssNMF method accurately and stably identifies group-level overlapping communities across subjects as well as individual differences in network organization with neurophysiologically meaningful interpretations. This research extends our understanding of the common underlying community structures and individual differences in community strengths in brain functional network organization.
引用
收藏
页码:259 / 275
页数:17
相关论文
共 80 条
[1]   Non-negative matrix factorization of multimodal MRI, fMRI and phenotypic data reveals differential changes in default mode subnetworks in ADHD [J].
Anderson, Ariana ;
Douglas, Pamela K. ;
Kerr, Wesley T. ;
Haynes, Virginia S. ;
Yuille, Alan L. ;
Xie, Jianwen ;
Wu, Ying Nian ;
Brown, Jesse A. ;
Cohen, Mark S. .
NEUROIMAGE, 2014, 102 :207-219
[2]  
[Anonymous], 2012, INT C DATA MINING SO
[3]  
[Anonymous], 2014, Advances in Neural Information Processing Systems
[4]  
[Anonymous], 2011, P 25 ADV NEUR INF PR
[5]   FUNCTIONAL CONNECTIVITY IN THE MOTOR CORTEX OF RESTING HUMAN BRAIN USING ECHO-PLANAR MRI [J].
BISWAL, B ;
YETKIN, FZ ;
HAUGHTON, VM ;
HYDE, JS .
MAGNETIC RESONANCE IN MEDICINE, 1995, 34 (04) :537-541
[6]   Toward discovery science of human brain function [J].
Biswal, Bharat B. ;
Mennes, Maarten ;
Zuo, Xi-Nian ;
Gohel, Suril ;
Kelly, Clare ;
Smith, Steve M. ;
Beckmann, Christian F. ;
Adelstein, Jonathan S. ;
Buckner, Randy L. ;
Colcombe, Stan ;
Dogonowski, Anne-Marie ;
Ernst, Monique ;
Fair, Damien ;
Hampson, Michelle ;
Hoptman, Matthew J. ;
Hyde, James S. ;
Kiviniemi, Vesa J. ;
Kotter, Rolf ;
Li, Shi-Jiang ;
Lin, Ching-Po ;
Lowe, Mark J. ;
Mackay, Clare ;
Madden, David J. ;
Madsen, Kristoffer H. ;
Margulies, Daniel S. ;
Mayberg, Helen S. ;
McMahon, Katie ;
Monk, Christopher S. ;
Mostofsky, Stewart H. ;
Nagel, Bonnie J. ;
Pekar, James J. ;
Peltier, Scott J. ;
Petersen, Steven E. ;
Riedl, Valentin ;
Rombouts, Serge A. R. B. ;
Rypma, Bart ;
Schlaggar, Bradley L. ;
Schmidt, Sein ;
Seidler, Rachael D. ;
Siegle, Greg J. ;
Sorg, Christian ;
Teng, Gao-Jun ;
Veijola, Juha ;
Villringer, Arno ;
Walter, Martin ;
Wang, Lihong ;
Weng, Xu-Chu ;
Whitfield-Gabrieli, Susan ;
Williamson, Peter ;
Windischberger, Christian .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (10) :4734-4739
[7]   SVD based initialization: A head start for nonnegative matrix factorization [J].
Boutsidis, C. ;
Gallopoulos, E. .
PATTERN RECOGNITION, 2008, 41 (04) :1350-1362
[8]   Distributed optimization and statistical learning via the alternating direction method of multipliers [J].
Boyd S. ;
Parikh N. ;
Chu E. ;
Peleato B. ;
Eckstein J. .
Foundations and Trends in Machine Learning, 2010, 3 (01) :1-122
[9]   Test-retest reliability of resting-state connectivity network characteristics using fMRI and graph theoretical measures [J].
Braun, Urs ;
Plichta, Michael M. ;
Esslinger, Christine ;
Sauer, Carina ;
Haddad, Leila ;
Grimm, Oliver ;
Mier, Daniela ;
Mohnke, Sebastian ;
Heinz, Andreas ;
Erk, Susanne ;
Walter, Henrik ;
Seiferth, Nina ;
Kirsch, Peter ;
Meyer-Lindenberg, Andreas .
NEUROIMAGE, 2012, 59 (02) :1404-1412
[10]   The evolution of distributed association networks in the human brain [J].
Buckner, Randy L. ;
Krienen, Fenna M. .
TRENDS IN COGNITIVE SCIENCES, 2013, 17 (12) :648-665