Processable Thermally Conductive Polyurethane Composite Fibers

被引:25
作者
Farajikhah, Syamak [1 ]
Van Amber, Rebecca [2 ]
Sayyar, Sepidar [3 ]
Shafei, Sajjad [4 ]
Fay, Cormac D. [1 ]
Beirne, Stephen [1 ]
Javadi, Mohammad [1 ]
Wang, Xungai [2 ]
Innis, Peter C. [1 ,3 ]
Paull, Brett [5 ,6 ]
Wallace, Gordon G. [1 ,3 ]
机构
[1] Univ Wollongong, AIIM Facil, ARC Ctr Excellence Electromat Sci ACES, Innovat Campus, Wollongong, NSW 2500, Australia
[2] Deakin Univ, Inst Frontier Mat, ARC Ctr Excellence Electromat Sci, Geelong, Vic 3216, Australia
[3] Univ Wollongong, Australian Natl Fabricat Facil Mat Node, Innovat Campus, Wollongong, NSW 2500, Australia
[4] Deakin Univ, Inst Frontier Mat, Geelong, Vic 3216, Australia
[5] Univ Tasmania, Sch Nat Sci, Australian Ctr Res Separat Sci ACROSS, Hobart, Tas 7005, Australia
[6] Univ Tasmania, Sch Nat Sci, ARC Ctr Excellence Electromat Sci ACES, Hobart, Tas 7005, Australia
基金
澳大利亚研究理事会;
关键词
boron nitride; composite fibers; fiber spinning; thermal conductivity; thermally conductive fibers; WEARABLE ELECTRONICS; GRAPHENE; NANOCOMPOSITES; TEMPERATURE; PERFORMANCE; TEXTILES; HYBRID; FABRICATION; BEHAVIOR; POLYMER;
D O I
10.1002/mame.201800542
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The demand for wearable electronics has resulted in an increasing interest in the development of functional fibers, with a specific focus upon the development of electrically conductive fibers incorporable into garments. However, the production of thermally conductive fibers for heat dissipation has been largely neglected. Owing to the very rapid development of miniaturized wearable electronics, there is an increasing need for the development of thermally conductive fibers as heat sinks and thermal management processes. In this study, thermally conductive but electrically insulating boron nitride nanopowder (BNNP) fillers are used to effectively enhance the thermal conductivity and mechanical properties of elastomeric polyurethane fibers. Thermal conductivity enhancement of more than 160% is achieved at very low loadings of BNNP (less than 5 wt%) with an improvement in the mechanical properties of the unmodified fiber. These thermally conductive fibers are also incorporated into 3D textile structures as a proof of processability.
引用
收藏
页数:7
相关论文
共 53 条
[1]   High-Performance Multifunctional Graphene Yarns: Toward Wearable All-Carbon Energy Storage Textiles [J].
Aboutalebi, Seyed Hamed ;
Jalili, Rouhollah ;
Esrafilzadeh, Dorna ;
Salari, Maryam ;
Gholamvand, Zahra ;
Yamini, Sima Aminorroaya ;
Konstantinov, Konstantin ;
Shepherd, Roderick L. ;
Chen, Jun ;
Moulton, Simon E. ;
Innis, Peter Charles ;
Minett, Andrew I. ;
Razal, Joselito M. ;
Wallace, Gordon G. .
ACS NANO, 2014, 8 (03) :2456-2466
[2]   Raman spectroscopy of single-wall boron nitride nanotubes [J].
Arenal, R. ;
Ferrari, A. C. ;
Reich, S. ;
Wirtz, L. ;
Mevellec, J. -Y. ;
Lefrant, S. ;
Rubio, A. ;
Loiseau, A. .
NANO LETTERS, 2006, 6 (08) :1812-1816
[3]  
Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/NMAT3064, 10.1038/nmat3064]
[4]   High performance polyurethane/functionalized graphene nanocomposites with improved mechanical and thermal properties [J].
Cai, Dongyu ;
Jin, Jie ;
Yusoh, Kamal ;
Rafiq, Rehman ;
Song, Mo .
COMPOSITES SCIENCE AND TECHNOLOGY, 2012, 72 (06) :702-707
[5]   Relationship between nanoscale deformation processes and elastic behavior of polyurethane elastomers [J].
Christenson, EM ;
Anderson, JM ;
Hiltner, A ;
Baer, E .
POLYMER, 2005, 46 (25) :11744-11754
[6]   Glass transition in thermosetting clay-nanocomposite polyurethanes [J].
Corcione, C. Esposito ;
Maffezzoli, A. .
THERMOCHIMICA ACTA, 2009, 485 (1-2) :43-48
[7]  
Coyle S., 2014, Wearable Sensors, P65, DOI DOI 10.1016/B978
[8]   Boron nitride (BN) and BN composites for high-temperature applications [J].
Eichler, Jens ;
Lesniak, Christoph .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2008, 28 (05) :1105-1109
[9]  
Farajikhah S., 2018, ELECTROACTIVE FIBRE
[10]   Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites [J].
Ganguli, Sabyasachi ;
Roy, Ajit K. ;
Anderson, David P. .
CARBON, 2008, 46 (05) :806-817