A highly selective synthesis of 2,6-dimethylnaphthanlene(2,6-DMN) by transalkylation between 2-methylnaphthanlene(2-MN) and 1,2,4,5-tetramethylbenzene(TeMB) was performed with 1-alkyl-3-methylimidazolium aluminum chloride([C(n)mim]Cl-AlCl3) ionic liquids(ILs) as catalysts. The influences of the alkyl group as the organic cation, the acidic strength of [C(4)mim]Cl-AlCl3 ILs as well as the reaction conditions on the catalytic performance were investigated. [C(4)mim]Cl-AlCl3 ILs[x(AlCl3)=71%] exhibited high activity and selectivity toward 2,6-DMN. The selectivity to 2,6-DMN and the 2,6-DMN/2,7-DMN ratio reached up to 68.2% and 3.7:1, respectively. The UV-Vis spectrum of TeMB treated by different ILs shows that the protonated degree of TeMB dependeds on the acidity strength of ILs, which has a significant impact on the reaction results. The high protonated degree of TeMB is advantageous to enhancing the conversion of transalkylation and the large stereo-hindrance effect of TeMB is favorable to improving the selecivity to 2,6-DMN.