Scheduling for energy minimization on restricted parallel processors

被引:9
作者
Jin, Xibo [1 ,4 ]
Zhang, Fa [2 ]
Fan, Liya [5 ]
Song, Ying [3 ]
Liu, Zhiyong [1 ,3 ]
机构
[1] Chinese Acad Sci, Inst Comp Technol, Beijing Key Lab Mobile Comp & Pervas Device, Beijing, Peoples R China
[2] Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing, Peoples R China
[3] Chinese Acad Sci, Inst Comp Technol, State Key Lab Comp Architecture, Beijing, Peoples R China
[4] Univ Chinese Acad Sci, Beijing, Peoples R China
[5] IBM China Res Lab, Beijing, Peoples R China
关键词
Energy-efficient scheduling; Restricted parallel processors; Speed scaling; Continuous speed model; Approximation algorithm; POWER; TASKS;
D O I
10.1016/j.jpdc.2015.04.001
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Scheduling for energy conservation has become a major concern in the field of information technology because of the need to reduce energy use and carbon dioxide emissions. Previous work has focused on the assumption that a task can be assigned to any processor. In contrast, we initially study the problem of task scheduling on restricted parallel processors. The resfriction takes account of affinities between tasks and processors; that is, a task has its own eligible set of processors. We adopt the Speed Scaling (SS) method to save energy under an execution time constraint (on the makespan C-max), and the processors can run at arbitrary speeds in [s(min), s(max)]. Our objective is to minimize the overall energy consumption. The energy-efficient scheduling problem, involving task assignment and speed scaling, is inherently complex as it is proved to be NP-complete for general tasks. We formulate the problem as an Integer Programming (IP) problem. Specifically, we devise a polynomial-time optimal scheduling algorithm for the case in which tasks have a uniform size. Our algorithm runs in O(mn(3) log n) time, where m is the number of processors and n is the number of tasks. We then present a polynomial-time algorithm that achieves a bounded approximation factor when the tasks have arbitrary-size work. Numerical results demonstrate that our algorithm could provide an energy-efficient solution to the problem of task scheduling on restricted parallel processors. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:36 / 46
页数:11
相关论文
共 26 条
  • [1] Albers S, 2007, SPAA'07: PROCEEDINGS OF THE NINETEENTH ANNUAL SYMPOSIUM ON PARALLELISM IN ALGORITHMS AND ARCHITECTURES, P289
  • [2] Alon N, 1997, PROCEEDINGS OF THE EIGHTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P493
  • [3] Angel E, 2012, LECT NOTES COMPUT SC, V7484, P128, DOI 10.1007/978-3-642-32820-6_15
  • [4] [Anonymous], 2008, POWER AWARE COMPUTIN
  • [5] Reclaiming the energy of a schedule: models and algorithms
    Aupy, Guillaume
    Benoit, Anne
    Dufosse, Fanny
    Robert, Yves
    [J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2013, 25 (11) : 1505 - 1523
  • [6] All-norm approximation algorithms
    Azar, Y
    Epstein, L
    Richter, Y
    Woeginger, GJ
    [J]. JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 2004, 52 (02): : 120 - 133
  • [7] Barrett Brian., Google's Insane Number of Servers Visualized
  • [8] Boyd S., 2004, CONVEX OPTIMIZATION
  • [9] Chen JJ, 2005, PROC INT CONF PARAL, P13
  • [10] Gandhi R, 2002, ANN IEEE SYMP FOUND, P323, DOI 10.1109/SFCS.2002.1181955