Prediction of Mode-I rock fracture toughness using support vector regression with metaheuristic optimization algorithms

被引:57
作者
Mahmoodzadeh, Arsalan [1 ]
Nejati, Hamid Reza [2 ]
Mohammadi, Mokhtar [3 ]
Ibrahim, Hawkar Hashim [4 ]
Khishe, Mohammad [5 ]
Rashidi, Shima [6 ]
Ali, Hunar Farid Hama [1 ]
机构
[1] Univ Halabja, Dept Civil Engn, Halabja, Kurdistan Regio, Iraq
[2] Tarbiat Modares Univ, Sch Engn, Rock Mech Div, Tehran, Iran
[3] Lebanese French Univ, Coll Engn & Comp Sci, Dept Informat Technol, Erbil, Kurdistan Regio, Iraq
[4] Salahaddin Univ Erbil, Coll Engn, Civil Engn Dept, Erbil 44002, Kurdistan Regio, Iraq
[5] Imam Khomeini Marine Sci Univ Nowshahr, Dept Marine Elect & Commun Engn, Nowshahr, Iran
[6] Univ Human Dev, Coll Sci & Technol, Dept Comp Sci, Sulaimaniyah, Kurdistan Regio, Iraq
关键词
Mode-I rock fracture toughness; Machine learning; Metaheuristic optimization  cracked Chevron notched Brazilian disc test; Mutual information test; BRAZILIAN DISC SPECIMEN; CRACK-PROPAGATION; SUGGESTED METHOD; BEHAVIOR; CCNBD; SIZE;
D O I
10.1016/j.engfracmech.2022.108334
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this work, the support vector regression method is combined with six metaheuristic optimization models of particle swarm optimization, grey wolf optimization, multiverse optimization, moth flame optimization, sine cosine algorithm, and social spider optimization to predict Mode-I rock fracture toughness. In addition, four other models of random regression forest, extra regression tree, decision regression tree, and fully-connected neural network that previously were used to predict the Mode-I rock fracture toughness by other researchers, was applied by this study. 250 datasets, including six input parameters and one output parameter (Mode-I rock fracture toughness) were utilized in the models obtained through the cracked Chevron notched Brazilian disc testing specimens suggested by the ISRM in the laboratory. Finally, the hybrid model of support vector regression-particle swarm optimization produced the most accurate results and it was recommended to predict the Mode-I rock fracture toughness. Also, the mutual information test was used to examine the impact of each input parameter on the Mode-I rock fracture toughness. Finally, the uniaxial tensile strength was identified as the most effective parameter on the Mode-I rock fracture toughness.
引用
收藏
页数:16
相关论文
共 59 条
[1]   Size-dependent fracture behavior of Guiting limestone under mixed mode loading [J].
Akbardoost, J. ;
Ayatollahi, M. R. ;
Aliha, M. R. M. ;
Pavier, M. J. ;
Smith, D. J. .
INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2014, 71 :369-380
[2]   Influence of geochemistry on toughening behavior of organic-rich shale [J].
Akono, Ange-Therese ;
Kabir, Pooyan .
ACTA GEOTECHNICA, 2019, 14 (04) :1129-1142
[3]   Rock fracture toughness study using cracked chevron notched Brazilian disc specimen under pure modes I and II loading - A statistical approach [J].
Aliha, M. R. M. ;
Ayatollahi, M. R. .
THEORETICAL AND APPLIED FRACTURE MECHANICS, 2014, 69 :17-25
[4]   Geometry effects and statistical analysis of mode I fracture in guiting limestone [J].
Aliha, M. R. M. ;
Sistaninia, M. ;
Smith, D. J. ;
Pavier, M. J. ;
Ayatollahi, M. R. .
INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2012, 51 :128-135
[5]   Typical Upper Bound-Lower Bound Mixed Mode Fracture Resistance Envelopes for Rock Material [J].
Aliha, M. R. M. ;
Ayatollahi, M. R. ;
Akbardoost, J. .
ROCK MECHANICS AND ROCK ENGINEERING, 2012, 45 (01) :65-74
[6]  
[Anonymous], 1988, INT J ROCK MECH MIN, V25, P71
[7]   Stress Intensity Factors of Semi-Circular Bend Specimens with Straight-Through and Chevron Notches [J].
Ayatollahi, M. R. ;
Mahdavi, E. ;
Alborzi, M. J. ;
Obara, Y. .
ROCK MECHANICS AND ROCK ENGINEERING, 2016, 49 (04) :1161-1172
[8]   Size and Geometry Effects on Rock Fracture Toughness: Mode I Fracture [J].
Ayatollahi, M. R. ;
Akbardoost, J. .
ROCK MECHANICS AND ROCK ENGINEERING, 2014, 47 (02) :677-687
[9]   Mode I fracture initiation in limestone by strain energy density criterion [J].
Ayatollahi, M. R. ;
Sedighiani, Karo .
THEORETICAL AND APPLIED FRACTURE MECHANICS, 2012, 57 (01) :14-18
[10]   A comparative study of different machine learning algorithms in predicting EPB shield behaviour: a case study at the Xi'an metro, China [J].
Bai, Xue-Dong ;
Cheng, Wen-Chieh ;
Li, Ge .
ACTA GEOTECHNICA, 2021, 16 (12) :4061-4080