共 50 条
Modeling and simulation of compressed air storage in caverns: A case study of the Huntorf plant
被引:332
作者:
Raju, Mandhapati
[2
]
Khaitan, Siddhartha Kumar
[1
]
机构:
[1] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50014 USA
[2] Optimal CAE Inc, Plymouth, MI 48170 USA
关键词:
CAES;
Huntorf;
Cavern;
Simulation;
Heat transfer coefficient;
ENERGY-STORAGE;
WIND ENERGY;
ELECTRICITY;
SYSTEM;
D O I:
10.1016/j.apenergy.2011.08.019
中图分类号:
TE [石油、天然气工业];
TK [能源与动力工程];
学科分类号:
0807 ;
0820 ;
摘要:
An accurate dynamic simulation model for compressed air energy storage (CAES) inside caverns has been developed. Huntorf gas turbine plant is taken as the case study to validate the model. Accurate dynamic modeling of CAES involves formulating both the mass and energy balance inside the storage. In the ground reservoir based storage bed, the heat transfer from the ground reservoir plays an important role in predicting the cavern storage behavior and is therefore taken into account. The heat transfer coefficient between the cavern walls and the air inside the cavern is accurately modeled based on the real tests data obtained from the Huntorf plant trial tests. Finally the model is validated based on a typical daily schedule operation of the Huntorf plant. A comparison is also made with the results obtained from adiabatic and isothermal assumptions inside the cavern to gain further insights. Such accurate modeling of cavern dynamics will affect the design of the cavern storage beds for future explorations. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:474 / 481
页数:8
相关论文