On strong γk-γcl H∞ stabilization and simultaneous γk-γcl H∞ control

被引:0
作者
Cheng, Peng [1 ]
Cao, Yong-Yan [1 ]
Sun, Youxian [1 ]
机构
[1] Zhejiang Univ, State Key Lab Ind Control Technol, Hangzhou 310027, Peoples R China
来源
PROCEEDINGS OF THE 46TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14 | 2007年
关键词
strong stabilization; H-infinity control; simultaneous stabilization; linear matrix inequalities; MIMO SYSTEMS; DESIGN; ORDER; H-2;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The strong gamma(k)-gamma(cl) H-infinity stabilization problem as well as the simultaneous gamma(k)-gamma(cl) H-infinity control problem is addressed in this paper. Based on the bounded real lemma, a sufficient condition for strong gamma(k)-gamma(cl) H-infinity stabilization is proposed, which leads to the design procedures that involve an algebraic Riccati equation and some LMI constraints. It is also proved that the simultaneous gamma(k)-gamma(cl) H-infinity stabilization problem for r (r > 2) plants is equal to strongly gamma(k)-gamma(cl) H-infinity stabilize r-1 associated plants. Finally, a numerical example is presented to demonstrate the effectiveness of the result.
引用
收藏
页码:1269 / 1274
页数:6
相关论文
共 27 条
[1]  
Blondel Vincent., 1994, LECT NOTES CONTROL I, V191
[2]   H∞ strong stabilization [J].
Campos-Delgado, DU ;
Zhou, KM .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2001, 46 (12) :1968-1972
[3]   A parametric optimization approach to H∞ and H2 strong stabilization [J].
Campos-Delgado, DU ;
Zhou, KM .
AUTOMATICA, 2003, 39 (07) :1205-1211
[4]   On simultaneous H∞ control and strong H∞ stabilizations [J].
Cao, YY ;
Lam, J .
AUTOMATICA, 2000, 36 (06) :859-865
[5]   SIMULTANEOUS STABILIZATION USING STABLE SYSTEM INVERSION [J].
CHEN, HB ;
CHOW, JH ;
KALE, MA ;
MINTO, KD .
AUTOMATICA, 1995, 31 (04) :531-542
[6]   STATE-SPACE SOLUTIONS TO STANDARD H-2 AND H-INFINITY CONTROL-PROBLEMS [J].
DOYLE, JC ;
GLOVER, K ;
KHARGONEKAR, PP ;
FRANCIS, BA .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1989, 34 (08) :831-847
[7]   On the simultaneous stabilization of three or more plants [J].
Fonte, C ;
Zasadzinski, M ;
Bernier-Kazantsev, C ;
Darouach, M .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2001, 46 (07) :1101-1107
[8]   A LINEAR MATRIX INEQUALITY APPROACH TO H-INFINITY CONTROL [J].
GAHINET, P ;
APKARIAN, P .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 1994, 4 (04) :421-448
[9]   Remarks on strong stabilization and stable H∞ controller design [J].
Gümüssoy, S ;
Özbay, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (12) :2083-2087
[10]   Simultaneous stabilization of multiplicatively perturbed plants [J].
Gundes, AN .
SYSTEMS & CONTROL LETTERS, 1997, 30 (04) :149-158