Automatic detection metastasis in breast histopathological images based on ensemble learning and color adjustment

被引:18
作者
Luz, Daniel S. [1 ,2 ]
Lima, Thiago J. B. [1 ]
Silva, Romuere R. V. [1 ]
Magalhaes, Deborah M. V. [1 ]
Araujo, Flavio H. D. [1 ]
机构
[1] Univ Fed Piaui, Teresina, PI, Brazil
[2] Fed Inst Educ Sci & Technol Piaui, Picos, PI, Brazil
关键词
Breast cancer; Deep learning; Color normalization; PCam; Histopathological images;
D O I
10.1016/j.bspc.2022.103564
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Breast cancer is a common neoplasm among women. The cure of the disease depends on early identification and treatment of the tumor to avoid advanced stages such as metastasis of the initial lesion. Recently, studies have shown that computational methods could help specialists in this process and even provide advantages over the traditional analysis method. Thus, this work proposes a tumor cell detection method based on an ensemble of convolutional neural networks (CNN) trained with normalized images using different color adjustment techniques. Analyses of eight different color spaces and their channels, and two color normalization methods were performed to reduce the effects caused by color variation of histopathological images on the generalization of predictive models. The proposed approach evaluated six CNN architectures with color adjustment methods to define which ones improve and preserve important characteristics for the classification task. The ensemble that constitutes the proposed method comprises three models of the VGG-19 architecture trained in images generated through from the color space HSV, from the color channel RED of the RGB images, and RGB images normalized with Reinhard method, respectively. This approach was evaluated using a public image database containing 327,680 histopathological images extracted from breast tissue. The method achieved promising results, with an accuracy of 0.9193 and an AUC of 0.9772. These results demonstrate that a combination of color adjustment techniques produces better results than applying the techniques individually.
引用
收藏
页数:10
相关论文
共 50 条
[1]   Comparing supervised and semi-supervised Machine Learning Models on Diagnosing Breast Cancer [J].
Al-Azzam, Nosayba ;
Shatnawi, Ibrahem .
ANNALS OF MEDICINE AND SURGERY, 2021, 62 :53-64
[2]   Structured crowdsourcing enables convolutional segmentation of histology images [J].
Amgad, Mohamed ;
Elfandy, Habiba ;
Hussein, Hagar ;
Atteya, Lamees A. ;
Elsebaie, Mai A. T. ;
Elnasr, Lamia S. Abo ;
Sakr, Rokia A. ;
Salem, Hazem S. E. ;
Ismail, Ahmed F. ;
Saad, Anas M. ;
Ahmed, Joumana ;
Elsebaie, Maha A. T. ;
Rahman, Mustafijur ;
Ruhban, Inas A. ;
Elgazar, Nada M. ;
Alagha, Yahya ;
Osman, Mohamed H. ;
Alhusseiny, Ahmed M. ;
Khalaf, Mariam M. ;
Younes, Abo-Alela F. ;
Abdulkarim, Ali ;
Younes, Duaa M. ;
Gadallah, Ahmed M. ;
Elkashash, Ahmad M. ;
Fala, Salma Y. ;
Zaki, Basma M. ;
Beezley, Jonathan ;
Chittajallu, Deepak R. ;
Manthey, David ;
Gutman, David A. ;
Cooper, Lee A. D. .
BIOINFORMATICS, 2019, 35 (18) :3461-3467
[3]  
[Anonymous], 2012, Metric learning: A survey, DOI [DOI 10.1561/2200000019, 10.1561/2200000019]
[4]  
[Anonymous], INT J MED INFORM
[5]  
[Anonymous], 2018, BIOTECHNOL J, DOI DOI 10.1016/J.CSBJ.2018.01.001
[6]   Deep learning for cell image segmentation and ranking [J].
Araujo, Flavio H. D. ;
Silva, Romuere R. V. ;
Ushizima, Daniela M. ;
Rezende, Mariana T. ;
Carneiro, Claudia M. ;
Campos Bianchi, Andrea G. ;
Medeiros, Fatima N. S. .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2019, 72 :13-21
[7]   Using machine learning to support healthcare professionals in making preauthorisation decisions [J].
Araujo, Flavio H. D. ;
Santana, Andre M. ;
Santos Neto, Pedro de A. .
INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2016, 94 :1-7
[8]   Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer [J].
Bejnordi, Babak Ehteshami ;
Veta, Mitko ;
van Diest, Paul Johannes ;
van Ginneken, Bram ;
Karssemeijer, Nico ;
Litjens, Geert ;
van der Laak, Jeroen A. W. M. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (22) :2199-2210
[9]   The use of the area under the roc curve in the evaluation of machine learning algorithms [J].
Bradley, AP .
PATTERN RECOGNITION, 1997, 30 (07) :1145-1159
[10]   Influence of normalization and color space to color texture classification [J].
Cernadas, E. ;
Fernandez-Delgado, M. ;
Gonzalez-Rufino, E. ;
Carrion, P. .
PATTERN RECOGNITION, 2017, 61 :120-138