Dynamic Admission Control and Resource Allocation for Mobile Edge Computing Enabled Small Cell Network

被引:57
|
作者
Huang, Jiwei [1 ]
Lv, Bofeng [1 ]
Wu, Yuan [2 ,3 ]
Chen, Ying [4 ]
Shen, Xuemin [5 ]
机构
[1] China Univ Petr, Beijing Key Lab Petr Data Min, Beijing 102249, Peoples R China
[2] Univ Macau, State Key Lab Internet Things Smart City, Macau 999078, Peoples R China
[3] Univ Macau, Dept Comp & Informat Sci, Macau 999078, Peoples R China
[4] Beijing Informat Sci & Technol Univ, Comp Sch, Beijing 100101, Peoples R China
[5] Univ Waterloo, Dept Elect & Comp Engn, Waterloo, ON N2L 3G1, Canada
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Task analysis; Servers; Admission control; Resource management; Throughput; Vehicle dynamics; Stochastic processes; MEC; small cell networks; admission control; resource allocation; OPTIMIZATION; MANAGEMENT; RADIO;
D O I
10.1109/TVT.2021.3133696
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Mobile edge computing (MEC) has recently risen as a promising paradigm to meet the increasing resource requirements of the terminal devices. Meanwhile, small cell network (SCN) with MEC has been emerging to handle the exponentially increasing data traffic and improve the network coverage, and is recognized as one key component of the next generation wireless networks. However, with the growing number of terminal devices requiring computation offloading to the edge servers, the network would be heavily congested and thus the performance would be degraded and unbalanced among multiple devices. In this paper, we propose the joint admission control and computation resource allocation in the MEC enabled SCN, and formulate it as a stochastic optimization problem. The goal is to maximize the system utility combining the throughput and fairness while bounding the queue. We decouple the original problem into three independent subproblems, which can be solved in a distributed manner without requiring the system statistical information. An admission control and computation resource allocation (ACCRA) algorithm is designed to obtain the optimal solutions of the subproblems. Theoretical analysis proves that the ACCRA algorithm can achieve the close-to-optimal system utility and reach the arbitrary tradeoff between the utility and the queue length. Experiments are conducted to validate the derived analytical results and evaluate the performance of the ACCRA algorithm.
引用
收藏
页码:1964 / 1973
页数:10
相关论文
共 50 条
  • [41] Cooperative Computation Offloading and Resource Allocation for Blockchain-Enabled Mobile-Edge Computing: A Deep Reinforcement Learning Approach
    Feng, Jie
    Yu, F. Richard
    Pei, Qingqi
    Chu, Xiaoli
    Du, Jianbo
    Zhu, Li
    IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (07) : 6214 - 6228
  • [42] UAV-Enabled Mobile-Edge Computing for AI Applications: Joint Model Decision, Resource Allocation, and Trajectory Optimization
    Deng, Cailian
    Fang, Xuming
    Wang, Xianbin
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (07) : 5662 - 5675
  • [43] Dynamic Offloading and Resource Scheduling for Mobile-Edge Computing With Energy Harvesting Devices
    Zhao, Fengjun
    Chen, Ying
    Zhang, Yongchao
    Liu, Zhiyong
    Chen, Xin
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2021, 18 (02): : 2154 - 2165
  • [44] Task Offloading Optimization in NOMA-Enabled Dual-Hop Mobile Edge Computing System Using Conflict Graph
    Al-Abiad, Mohammed S. S.
    Hassan, Md. Zoheb
    Hossain, Md. Jahangir
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (02) : 761 - 777
  • [45] RELIABLE: Resource Allocation Mechanism for 5G Network using Mobile Edge Computing
    Pereira, Rickson S.
    Lieira, Douglas D.
    da Silva, Marco A. C.
    Pimenta, Adinovam H. M.
    da Costa, Joahannes B. D.
    Rosario, Denis
    Villas, Leandro
    Meneguette, Rodolfo, I
    SENSORS, 2020, 20 (19) : 1 - 18
  • [46] Maximum Task Admission by Computing Offloading to Mobile Edge Networks
    Hu, Chia-Cheng
    IEEE SYSTEMS JOURNAL, 2022, 16 (02): : 2592 - 2601
  • [47] Task offloading and resource allocation for blockchain-enabled mobile edge computing
    Fang, Renbin
    Lin, Peng
    Liu, Yize
    Liu, Yan
    IET COMMUNICATIONS, 2024, 18 (20) : 1889 - 1899
  • [48] Task Offloading and Resource Allocation for Container-enabled Mobile Edge Computing
    Zhou, Ao
    Li, Sisi
    Wang, Shangguang
    2021 IEEE INTERNATIONAL CONFERENCE ON SERVICES COMPUTING (SCC 2021), 2021, : 222 - 232
  • [49] Mobile Virtual Network Admission Control and Resource Allocation for Wireless Network Virtualization: A Robust Optimization Approach
    Liang, Chengchao
    Yu, F. Richard
    2015 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2015,
  • [50] Offloading and Resource Allocation With General Task Graph in Mobile Edge Computing: A Deep Reinforcement Learning Approach
    Yan, Jia
    Bi, Suzhi
    Zhang, Ying-Jun Angela
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2020, 19 (08) : 5404 - 5419