Dynamic Admission Control and Resource Allocation for Mobile Edge Computing Enabled Small Cell Network

被引:60
作者
Huang, Jiwei [1 ]
Lv, Bofeng [1 ]
Wu, Yuan [2 ,3 ]
Chen, Ying [4 ]
Shen, Xuemin [5 ]
机构
[1] China Univ Petr, Beijing Key Lab Petr Data Min, Beijing 102249, Peoples R China
[2] Univ Macau, State Key Lab Internet Things Smart City, Macau 999078, Peoples R China
[3] Univ Macau, Dept Comp & Informat Sci, Macau 999078, Peoples R China
[4] Beijing Informat Sci & Technol Univ, Comp Sch, Beijing 100101, Peoples R China
[5] Univ Waterloo, Dept Elect & Comp Engn, Waterloo, ON N2L 3G1, Canada
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Task analysis; Servers; Admission control; Resource management; Throughput; Vehicle dynamics; Stochastic processes; MEC; small cell networks; admission control; resource allocation; OPTIMIZATION; MANAGEMENT; RADIO;
D O I
10.1109/TVT.2021.3133696
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Mobile edge computing (MEC) has recently risen as a promising paradigm to meet the increasing resource requirements of the terminal devices. Meanwhile, small cell network (SCN) with MEC has been emerging to handle the exponentially increasing data traffic and improve the network coverage, and is recognized as one key component of the next generation wireless networks. However, with the growing number of terminal devices requiring computation offloading to the edge servers, the network would be heavily congested and thus the performance would be degraded and unbalanced among multiple devices. In this paper, we propose the joint admission control and computation resource allocation in the MEC enabled SCN, and formulate it as a stochastic optimization problem. The goal is to maximize the system utility combining the throughput and fairness while bounding the queue. We decouple the original problem into three independent subproblems, which can be solved in a distributed manner without requiring the system statistical information. An admission control and computation resource allocation (ACCRA) algorithm is designed to obtain the optimal solutions of the subproblems. Theoretical analysis proves that the ACCRA algorithm can achieve the close-to-optimal system utility and reach the arbitrary tradeoff between the utility and the queue length. Experiments are conducted to validate the derived analytical results and evaluate the performance of the ACCRA algorithm.
引用
收藏
页码:1964 / 1973
页数:10
相关论文
共 24 条
[1]   Dynamic Task Offloading for Mobile Edge Computing with Hybrid Energy Supply [J].
Chen, Ying ;
Zhao, Fengjun ;
Lu, Yangguang ;
Chen, Xin .
TSINGHUA SCIENCE AND TECHNOLOGY, 2023, 28 (03) :421-432
[2]   TOFFEE: Task Offloading and Frequency Scaling for Energy Efficiency of Mobile Devices in Mobile Edge Computing [J].
Chen, Ying ;
Zhang, Ning ;
Zhang, Yongchao ;
Chen, Xin ;
Wu, Wen ;
Shen, Xuemin .
IEEE TRANSACTIONS ON CLOUD COMPUTING, 2021, 9 (04) :1634-1644
[3]   Mobile-Edge Computation Offloading for Ultradense IoT Networks [J].
Guo, Hongzhi ;
Liu, Jiajia ;
Zhang, Jie ;
Sun, Wen ;
Kato, Nei .
IEEE INTERNET OF THINGS JOURNAL, 2018, 5 (06) :4977-4988
[4]   Revenue-optimal task scheduling and resource management for IoT batch jobs in mobile edge computing [J].
Huang, Jiwei ;
Li, Songyuan ;
Chen, Ying .
PEER-TO-PEER NETWORKING AND APPLICATIONS, 2020, 13 (05) :1776-1787
[5]   A Multi-queue Approach of Energy Efficient Task Scheduling for Sensor Hubs [J].
Huang, Jiwei ;
Zhang, Chenxiang ;
Zhang, Jianbing .
CHINESE JOURNAL OF ELECTRONICS, 2020, 29 (02) :242-247
[6]   Multi-Agent Deep Reinforcement Learning for Computation Offloading and Interference Coordination in Small Cell Networks [J].
Huang, Xiaoyan ;
Leng, Supeng ;
Maharjan, Sabita ;
Zhang, Yan .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (09) :9282-9293
[7]   Distributed Optimization of Collaborative Regions in Large-Scale Inhomogeneous Fog Computing [J].
Lyu, Xinchen ;
Ren, Chenshan ;
Ni, Wei ;
Tian, Hui ;
Liu, Ren Ping .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2018, 36 (03) :574-586
[8]   Optimal Schedule of Mobile Edge Computing for Internet of Things Using Partial Information [J].
Lyu, Xinchen ;
Ni, Wei ;
Tian, Hui ;
Liu, Ren Ping ;
Wang, Xin ;
Giannakis, Georgios B. ;
Paulraj, Arogyaswami .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2017, 35 (11) :2606-2615
[9]   Stochastic Joint Radio and Computational Resource Management for Multi-User Mobile-Edge Computing Systems [J].
Mao, Yuyi ;
Zhang, Jun ;
Song, S. H. ;
Letaief, Khaled B. .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2017, 16 (09) :5994-6009
[10]   Dynamic Computation Offloading for Mobile-Edge Computing With Energy Harvesting Devices [J].
Mao, Yuyi ;
Zhang, Jun ;
Letaief, Khaled B. .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2016, 34 (12) :3590-3605