Big Data in cardiac surgery: real world and perspectives

被引:10
作者
Montisci, Andrea [1 ]
Palmieri, Vittorio [2 ]
Vietri, Maria Teresa [3 ]
Sala, Silvia [4 ]
Maiello, Ciro [2 ]
Donatelli, Francesco [5 ,6 ]
Napoli, Claudio [7 ]
机构
[1] ASST Spedali Civili, Div Cardiothorac Intens Care, Cardiothorac Dept, I-25123 Brescia, Italy
[2] Azienda Osped Colli Monaldi Cotugno CTO, Dept Cardiac Surg & Transplantat, Naples, Italy
[3] Univ Campania Luigi Vanvitelli, Dept Precis Med, Naples, Italy
[4] Univ Brescia, Div Anesthesiol Intens Care & Emergency Med, Brescia, Italy
[5] Ist Clin St Ambrogio, Dept Cardiac Surg, Milan, Italy
[6] Univ Milan, Chair Cardiac Surg, Milan, Italy
[7] Univ Campania Luigi Vanvitelli, Univ Dept Adv Clin & Surg Sci, Clin Dept Internal Med & Specialist, Naples, Italy
关键词
Big Data; Cardiac surgery; Artificial intelligence; Machine learning; Coronary revascularization; Valvular heart diseases; Heart failure; Left ventricular assist devices; PERCUTANEOUS CORONARY INTERVENTION; VENTRICULAR ASSIST DEVICE; ARTIFICIAL-INTELLIGENCE; PRECISION MEDICINE; NETWORK MEDICINE; HEART; CLASSIFICATION; PREDICTION; QUANTIFICATION; VALIDATION;
D O I
10.1186/s13019-022-02025-z
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Big Data, and the derived analysis techniques, such as artificial intelligence and machine learning, have been considered a revolution in the modern practice of medicine. Big Data comes from multiple sources, encompassing electronic health records, clinical studies, imaging data, registries, administrative databases, patient-reported outcomes and OMICS profiles. The main objective of such analyses is to unveil hidden associations and patterns. In cardiac surgery, the main targets for the use of Big Data are the construction of predictive models to recognize patterns or associations better representing the individual risk or prognosis compared to classical surgical risk scores. The results of these studies contributed to kindle the interest for personalized medicine and contributed to recognize the limitations of randomized controlled trials in representing the real world. However, the main sources of evidence for guidelines and recommendations remain RCTs and meta-analysis. The extent of the revolution of Big Data and new analytical models in cardiac surgery is yet to be determined.
引用
收藏
页数:11
相关论文
共 80 条
[1]   Management of end-stage heart failure patients with or without ventricular assist device: an observational comparison of clinical and economic outcomes [J].
Aissaoui, Nadia ;
Morshuis, Michiel ;
Maoulida, Hassani ;
Salem, Joe-Elie ;
Lebreton, Guillaume ;
Brunn, Matthias ;
Chatellier, Gilles ;
Hagege, Albert ;
Schoenbrodt, Michael ;
Puymirat, Etienne ;
Latremouille, Christian ;
Varnous, Shaida ;
Ouldamar, Salima ;
Guillemain, Romain ;
Diebold, Benoit ;
Guedeney, Paul ;
Barreira, Marc ;
Mutuon, Pierre ;
Guerot, Emmanuel ;
Paluszkiewicz, Lech ;
Hakim-Meibodi, Kavous ;
Schulz, Uwe ;
Danchin, Nicolas ;
Gummert, Jan ;
Durand-Zaleski, Isabelle ;
Leprince, Pascal ;
Fagon, Jean-Yves .
EUROPEAN JOURNAL OF CARDIO-THORACIC SURGERY, 2018, 53 (01) :170-177
[2]   Artificial intelligence: a new clinical support tool for stress echocardiography [J].
Alsharqi, Maryam ;
Upton, Ross ;
Mumith, Angela ;
Leeson, Paul .
EXPERT REVIEW OF MEDICAL DEVICES, 2018, 15 (08) :513-515
[3]   Cardiovascular Event Prediction by Machine Learning The Multi-Ethnic Study of Atherosclerosis [J].
Ambale-Venkatesh, Bharath ;
Yang, Xiaoying ;
Wu, Colin O. ;
Liu, Kiang ;
Hundley, W. Gregory ;
McClelland, Robyn ;
Gomes, Antoinette S. ;
Folsom, Aaron R. ;
Shea, Steven ;
Guallar, Eliseo ;
Bluemke, David A. ;
Lima, Joao A. C. .
CIRCULATION RESEARCH, 2017, 121 (09) :1092-+
[4]   Using machine learning to improve survival prediction after heart transplantation [J].
Ayers, Brian ;
Sandhold, Toumas ;
Gosev, Igor ;
Prasad, Sunil ;
Kilic, Arman .
JOURNAL OF CARDIAC SURGERY, 2021, 36 (11) :4113-4120
[5]   Machine learning insight into the role of imaging and clinical variables for the prediction of obstructive coronary artery disease and revascularization: An exploratory analysis of the CONSERVE study [J].
Baskaran, Lohendran ;
Ying, Xiaohan ;
Xu, Zhuoran ;
Al'Aref, Subhi J. ;
Lee, Benjamin C. ;
Lee, Sang-Eun ;
Danad, Ibrahim ;
Park, Hyung-Bok ;
Bathina, Ravi ;
Baggiano, Andrea ;
Beltrama, Virginia ;
Cerci, Rodrigo ;
Choi, Eui-Young ;
Choi, Jung-Hyun ;
Choi, So-Yeon ;
Cole, Jason ;
Doh, Joon-Hyung ;
Ha, Sang-Jin ;
Her, Ae-Young ;
Kepka, Cezary ;
Kim, Jang-Young ;
Kim, Jin-Won ;
Kim, Sang-Wook ;
Kim, Woong ;
Lu, Yao ;
Kumar, Amit ;
Heo, Ran ;
Lee, Ji Hyun ;
Sung, Ji-min ;
Valeti, Uma ;
Andreini, Daniele ;
Pontone, Gianluca ;
Han, Donghee ;
Villines, Todd C. ;
Lin, Fay ;
Chang, Hyuk-Jae ;
Min, James K. ;
Shaw, Leslee J. .
PLOS ONE, 2020, 15 (06)
[6]   Machine learning-based phenogrouping in heart failure to identify responders to cardiac resynchronization therapy [J].
Cikes, Maja ;
Sanchez-Martinez, Sergio ;
Claggett, Brian ;
Duchateau, Nicolas ;
Piella, Gemma ;
Butakoff, Constantine ;
Pouleur, Anne Catherine ;
Knappe, Dorit ;
Biering-Sorensen, Tor ;
Kutyifa, Valentina ;
Moss, Arthur ;
Stein, Kenneth ;
Solomon, Scott D. ;
Bijnens, Bart .
EUROPEAN JOURNAL OF HEART FAILURE, 2019, 21 (01) :74-85
[7]  
Cobey FC, 2017, J AM SOC ECHOCARDIOG, V30, p26A, DOI 10.1016/j.echo.2017.08.008
[8]   The Emperor Has No Clothes: Recognizing the Limits of Current Echocardiographic Technology in Perioperative Quantification of Mitral Regurgitation [J].
Cobey, Frederick C. ;
Patel, Visal ;
Gosling, Andre ;
Ursprung, Eric .
JOURNAL OF CARDIOTHORACIC AND VASCULAR ANESTHESIA, 2017, 31 (05) :1692-1694
[9]   A formal definition of Big Data based on its essential features [J].
De Mauro, Andrea ;
Greco, Marco ;
Grimaldi, Michele .
LIBRARY REVIEW, 2016, 65 (03) :122-135
[10]   Machine learning algorithms estimating prognosis and guiding therapy in adult congenital heart disease: data from a single tertiary centre including 10019 patients [J].
Diller, Gerhard-Paul ;
Kempny, Aleksander ;
Babu-Narayan, Sonya V. ;
Henrichs, Marthe ;
Brida, Margarita ;
Uebing, Anselm ;
Lammers, Astrid E. ;
Baumgartner, Helmut ;
Li, Wei ;
Wort, Stephen J. ;
Dimopoulos, Konstantinos ;
Gatzoulis, Michael A. .
EUROPEAN HEART JOURNAL, 2019, 40 (13) :1069-1077