gene therapy;
RNA interference;
small interfering RNA;
rhodopsin;
genetic suppression;
D O I:
10.1016/j.ymthe.2005.03.028
中图分类号:
Q81 [生物工程学(生物技术)];
Q93 [微生物学];
学科分类号:
071005 ;
0836 ;
090102 ;
100705 ;
摘要:
The intragenic heterogeneity encountered in many dominant disease-causing genes represents a significant challenge with respect to development of economically viable therapeutics. For example, 25% of autosomal dominant retinitis pigmentosa is caused by over 100 different mutations within the gene encoding rhodopsin, each of which could require a unique gene therapy. We describe here an RNA interference (RNAi)-based mutation-independent approach, targeting as an example murine rhodopsin. Native transcripts are suppressed by a single RNAi molecular species, whereas transcripts from replacement genes engineered at degenerate third-codon wobble positions are resistant to suppression. We demonstrate suppression of murine rhodopsin transcript by up to 90% with full concomitant expression of replacement transcript and establish the validity of this approach in cell culture, retinal explants, and mouse liver in vivo.