Region-Based Automatic Regularization Parameter Tuning in CT Reconstruction

被引:0
|
作者
Duan, Jiayu [1 ]
Cai, Jianmei [1 ]
Mou, Xuanqin [1 ]
机构
[1] Xi An Jiao Tong Univ, Xian, Peoples R China
关键词
Regularization parameter; region variance; automatic segmentation; CT reconstruction; ALGORITHM;
D O I
10.1145/3364836.3364848
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In iterative CT reconstruction, the regularization parameter is quite important because it balances the fidelity term and penalty term. Images reconstructed with the optimal regularization parameter will keep the detail preserved and the noise restrained at the same time. While in conventional CT reconstruction, the selection of the regularization parameter is very time-consuming. Besides, the fixed regularization parameter during the iterations is not suitable for every area. For example, the bone area contains more noise than soft tissue areas. With fixed regularization parameter may sacrifice the other resolution. In order to solve this question, in this paper, we proposed an automatic regularization parameter tuning strategy based on region variance. The proposed method based on the region variance tunes the regularization parameter automatically. Experiments show that the proposed method exhibits well in small detail preservation and noise reduction.
引用
收藏
页码:55 / 58
页数:4
相关论文
共 50 条
  • [41] OPTIMIZATION OF REGULARIZATION PARAMETER FOR SPARSE RECONSTRUCTION BASED ON PREDICTIVE RISK ESTIMATE
    Xue, Feng
    Pan, Hanjie
    Liu, Xin
    Liu, Hongyan
    Liu, Jiaqi
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 1442 - 1446
  • [42] Fast CT metal artefacts correction based on derivative and region-based filling
    Li, YuanJin
    Chen, Yang
    Luo, LiMin
    Zhang, PengCheng
    Zhang, Quan
    JOURNAL OF MEDICAL IMAGING AND RADIATION ONCOLOGY, 2011, 55 (06) : 535 - 541
  • [43] Region-based topology
    Roeper, P
    JOURNAL OF PHILOSOPHICAL LOGIC, 1997, 26 (03) : 251 - 309
  • [44] Region-Based Topology
    Peter Roeper
    Journal of Philosophical Logic, 1997, 26 : 251 - 309
  • [45] Potentiality of automatic parameter tuning suite available in ACTS track reconstruction software framework
    Garg, Rocky Bala
    Allaire, Corentin
    Salzburger, Andreas
    Grasland, Hadrien
    Tompkins, Lauren
    Hofgard, Elyssa
    26TH INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS, CHEP 2023, 2024, 295
  • [46] Similarity-Driven Fine-Tuning Methods for Regularization Parameter Optimization in PET Image Reconstruction
    Zhu, Wen
    Lee, Soo-Jin
    SENSORS, 2023, 23 (13)
  • [47] Constrained Regularization by Denoising With Automatic Parameter Selection
    Cascarano, Pasquale
    Benfenati, Alessandro
    Kamilov, Ulugbek S.
    Xu, Xiaojian
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 556 - 560
  • [48] A Model of Regularization Parameter Determination in Low-Dose X-Ray CT Reconstruction Based on Dictionary Learning
    Zhang, Cheng
    Zhang, Tao
    Zheng, Jian
    Li, Ming
    Lu, Yanfei
    You, Jiali
    Guan, Yihui
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2015, 2015
  • [49] Document binarization with automatic parameter tuning
    Nicholas R. Howe
    International Journal on Document Analysis and Recognition (IJDAR), 2013, 16 : 247 - 258
  • [50] Experimental demonstration of a dynamic bowtie for region-based CT fluence optimization
    Robinson, Vance
    Smith, Walt
    Rui, Xue
    Yin, Zhye
    Wu, Mingye
    FitzGerald, Paul
    De Man, Bruno
    MEDICAL IMAGING 2016: PHYSICS OF MEDICAL IMAGING, 2016, 9783