Disruption predictor based on neural network and anomaly detection on J-TEXT

被引:24
|
作者
Zheng, W. [1 ]
Wu, Q. Q. [1 ]
Zhang, M. [1 ]
Chen, Z. Y. [1 ]
Shang, Y. X. [2 ]
Fan, J. N. [2 ]
Pan, Y. [2 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Elect & Elect Engn, Int Joint Res Lab Magnet Confinement Fus & Plasma, State Key Lab Adv Electromagnet Engn & Technol, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Elect & Elect Engn, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
major disruption; disruption prediction; deep learning; anomaly detection; JET; IMPLEMENTATION; SYSTEM;
D O I
10.1088/1361-6587/ab6b02
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Disruption prediction is essential for the safe operation of a large scale tokamak. Existing disruption predictors based on machine learning techniques have good prediction performance, but all these methods need large training datasets including many disruptions to develop their successful prediction capability. Future machines are unlikely to provide enough disruption samples since these cause excessive machine damage and the prediction models used are difficult to extrapolate to a machines that the predictor was not trained on. In this paper, a disruption predictor based on a deep learning and anomaly detection technique has been developed. It regards the disruption as an anomaly, and can learn on non-disruptive shots only. The model is trained to extract the hidden features of various non-disruptive shots with a convolutional neural network and a long-shot term memory (LSTM) recurrent neural network. It will predict the future trend of selected diagnostics, then using the predicted future trend and the measured signal to calculate an outlier factor to determine if a disruption is coming. It was tested with J-TEXT discharges in flat top phase and can demonstrate comparable performance to current machine learning disruption prediction techniques, without requiring a disruption data set. This could be applied to future tokamaks and reduce the dependency on disruptive experiments.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Enhancing Network Anomaly Detection Using Graph Neural Networks
    Marfo, William
    Tosh, Deepak K.
    Moore, Shirley V.
    2024 22ND MEDITERRANEAN COMMUNICATION AND COMPUTER NETWORKING CONFERENCE, MEDCOMNET 2024, 2024,
  • [22] DeepADV: A Deep Neural Network Framework for Anomaly Detection in VANETs
    Alladi, Tejasvi
    Gera, Bhavya
    Agrawal, Ayush
    Chamola, Vinay
    Yu, Fei Richard
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (11) : 12013 - 12023
  • [23] Hyperspectral Anomaly Detection Based on a Beta Wavelet Graph Neural Network
    Ruhan, A.
    Shen, Danyao
    Liu, Lijing
    Yin, Juanjuan
    Lin, Renpu
    IEEE MULTIMEDIA, 2024, 31 (02) : 69 - 79
  • [24] Anomaly Detection Using Deep Neural Network for IoT Architecture
    Ahmad, Zeeshan
    Khan, Adnan Shahid
    Nisar, Kashif
    Haider, Iram
    Hassan, Rosilah
    Haque, Muhammad Reazul
    Tarmizi, Seleviawati
    Rodrigues, Joel J. P. C.
    APPLIED SCIENCES-BASEL, 2021, 11 (15):
  • [25] SADCNN: Supervised anomaly detection based on convolutional neural network models
    Hatami, Maryam
    Gharaee, Hossein
    Mohammadzadeh, Naser
    INFORMATION SECURITY JOURNAL, 2025,
  • [26] DAN: Neural network based on dual attention for anomaly detection in ICS
    Xu, Lijuan
    Wang, Bailing
    Zhao, Dawei
    Wu, Xiaoming
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 263
  • [27] Anomaly Detection of Processes Behavior in Container Based on LSTM Neural Network
    Chen X.-S.
    Jin Y.-L.
    Wang Y.-L.
    Jiang C.
    Wang Q.-X.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2021, 49 (01): : 149 - 156
  • [28] BGP Anomaly Detection Based on Automatic Feature Extraction by Neural Network
    Xu, Mengying
    Li, Xing
    PROCEEDINGS OF 2020 IEEE 5TH INFORMATION TECHNOLOGY AND MECHATRONICS ENGINEERING CONFERENCE (ITOEC 2020), 2020, : 46 - 50
  • [29] Deep Neural Network Architecture for Anomaly Based Intrusion Detection System
    Behera, Sidharth
    Pradhan, Ayush
    Dash, Ratnakar
    2018 5TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND INTEGRATED NETWORKS (SPIN), 2018, : 270 - 274
  • [30] Anomaly detection analysis based on correlation of features in graph neural network
    Ko, Hoon
    Praca, Isabel
    Choi, Seong Gon
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (09) : 25487 - 25501