Using symmetry to improve percolation threshold bounds

被引:17
作者
May, WD [1 ]
Wierman, JC [1 ]
机构
[1] Johns Hopkins Univ, Dept Appl Math & Stat, Baltimore, MD 21218 USA
关键词
D O I
10.1017/S0963548305006802
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We show that symmetry, represented by a graph's automorphism group, can be used to greatly reduce the computational work for the substitution method. This allows application of the substitution method over larger regions of the problem lattices, resulting in tighter bounds on the percolation threshold p,. We demonstrate the symmetry reduction technique using bond percolation on the (3,122) lattice, where we improve the bounds on p, from (0.738598,0.744900) to (0.739399,0.741757), a reduction of more than 62% in width, from 0.006302 to 0.002358.
引用
收藏
页码:549 / 566
页数:18
相关论文
共 20 条
  • [1] [Anonymous], 1995, COMB PROBAB COMPUT
  • [2] Beckenbach E.F., 1981, APPL COMBINATORIAL M
  • [3] Biggs N., 1974, ALGEBRAIC GRAPH THEO
  • [4] Broadbent S. R., 1957, P CAMBRIDGE PHIL SOC, V53, P629, DOI [DOI 10.1017/S0305004100032680, 10.1017/S0305004100032680]
  • [5] The potts model on Kagome and honeycomb lattices
    Jensen, I
    Guttmann, AJ
    Enting, IG
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (23): : 8067 - 8083
  • [6] Lindvall T., 1992, Lectures on the coupling method
  • [7] Liu C. L., 1968, Introduction to Combinatorial Mathematics
  • [8] McKay B. D., 1990, Report TR-CS-90-02
  • [9] SQUIRES MB, 1994, THESIS N CAROLINA ST
  • [10] Stanley R., 1986, ENUMERATIVE COMBINAT, V1