Equivariant cohomology of the moduli space of genus three curves with symplectic level two structure via point counts

被引:5
作者
Bergvall, Olof [1 ]
机构
[1] Uppsala Univ, Matemat Inst, Box 480, S-75106 Uppsala, Sweden
关键词
Moduli of curves; Cohomology; Point counts; Purity;
D O I
10.1007/s40879-019-00332-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We determine the cohomology groups of the quartic and hyperelliptic loci inside the moduli space of genus three curves with symplectic level two structure as representations of the symmetric group S7 together with their mixed Hodge structures by means of making equivariant point counts over finite fields and via purity arguments. This determines the weighted Euler characteristic of the whole moduli space of genus three curves with level two structure.
引用
收藏
页码:262 / 320
页数:59
相关论文
共 29 条
[2]  
[Anonymous], 1978, Principles of algebraic geometry
[3]  
ARBARELLO E, 1985, GEOMETRY ALGEBRAIC C, V1
[4]   Cohomology of moduli spaces of curves of genus three via point counts [J].
Bergstrom, Jonas .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2008, 622 :155-187
[5]  
Bergström J, 2007, MATH ANN, V338, P207, DOI 10.1007/s00208-006-0073-z
[6]  
Bergström J, 2009, DOC MATH, V14, P259
[7]  
Bergvall O., 2016, THESIS
[8]  
Bergvall O, 2018, GEOM DEDICATA
[9]  
Borel A, 1960, SEM TRANSF GROUPS AN
[10]  
Das R, 2018, ARXIV180304146