Multiple linear regression for protein secondary structure prediction

被引:17
|
作者
Pan, XM [1 ]
机构
[1] Acad Sinica, Inst Biophys, Natl Lab Biomacromol, Beijing 100101, Peoples R China
关键词
protein folding; secondary structure prediction; multiple linear regression; consensus; jackknife; amino acid sequence;
D O I
10.1002/prot.1036
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In the present work, a novel method was proposed for prediction of secondary structure. Over a database of 396 proteins (CB396) with a three-state-defining secondary structure, this method with jackknife procedure achieved an accuracy of 68.8% and SOV score of 71.4% using single sequence and an accuracy of 73.7% and SOV score of 77.3% using multiple sequence alignments. Combination of this method with DSC, PHD, PREDATOR, and NNSSP gives Q(3) = 76.2% and SOV = 79.8%. (C) 2001 Wiley-Liss, Inc.
引用
收藏
页码:256 / 259
页数:4
相关论文
共 50 条
  • [31] A comparative study of random forests and multiple linear regression in the prediction of landslide velocity
    Martin Krkač
    Sanja Bernat Gazibara
    Željko Arbanas
    Marin Sečanj
    Snježana Mihalić Arbanas
    Landslides, 2020, 17 : 2515 - 2531
  • [32] Prediction of antileukemia activity of berbamine derivatives by genetic algorithm–multiple linear regression
    Mehdi Nekoei
    Mahmoud Salimi
    Mohsen Dolatabadi
    Majid Mohammadhosseini
    Monatshefte für Chemie - Chemical Monthly, 2011, 142
  • [33] Prediction of feed abrasive value by artificial neural networks and multiple linear regression
    M. A. Norouzian
    S. Asadpour
    Neural Computing and Applications, 2012, 21 : 905 - 909
  • [34] PERFORMANCE COMPARISON OF HAZE PREDICTION USING CHAOS THEORY AND MULTIPLE LINEAR REGRESSION
    Darman, Hazlina
    Abd Hamid, Nor Zila
    JOURNAL OF QUALITY MEASUREMENT AND ANALYSIS, 2024, 20 (03): : 23 - 34
  • [35] Energy Consumption Prediction of Electric City Buses Using Multiple Linear Regression
    Sennefelder, Roman Michael
    Martin-Clemente, Ruben
    Gonzalez-Carvajal, Ramon
    ENERGIES, 2023, 16 (11)
  • [36] Prediction of Building Electricity Consumption Based on Joinpoint-Multiple Linear Regression
    Yang, Hao
    Ran, Maoyu
    Zhuang, Chaoqun
    ENERGIES, 2022, 15 (22)
  • [37] Prediction of feed abrasive value by artificial neural networks and multiple linear regression
    Norouzian, M. A.
    Asadpour, S.
    NEURAL COMPUTING & APPLICATIONS, 2012, 21 (05) : 905 - 909
  • [38] Etemadi multiple linear regression
    Etemadi, Sepideh
    Khashei, Mehdi
    MEASUREMENT, 2021, 186
  • [39] A model of multiple linear regression
    Popescu, Ciprian
    Giuclea, Marius
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2007, 8 (02): : 137 - 144