Multiple linear regression for protein secondary structure prediction

被引:17
|
作者
Pan, XM [1 ]
机构
[1] Acad Sinica, Inst Biophys, Natl Lab Biomacromol, Beijing 100101, Peoples R China
关键词
protein folding; secondary structure prediction; multiple linear regression; consensus; jackknife; amino acid sequence;
D O I
10.1002/prot.1036
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In the present work, a novel method was proposed for prediction of secondary structure. Over a database of 396 proteins (CB396) with a three-state-defining secondary structure, this method with jackknife procedure achieved an accuracy of 68.8% and SOV score of 71.4% using single sequence and an accuracy of 73.7% and SOV score of 77.3% using multiple sequence alignments. Combination of this method with DSC, PHD, PREDATOR, and NNSSP gives Q(3) = 76.2% and SOV = 79.8%. (C) 2001 Wiley-Liss, Inc.
引用
收藏
页码:256 / 259
页数:4
相关论文
共 50 条
  • [21] Application of Multiple Linear Regression and Geographically Weighted Regression Model for Prediction of PM2.5
    Tripta Narayan
    Tanushree Bhattacharya
    Soubhik Chakraborty
    Swapan Konar
    Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2022, 92 : 217 - 229
  • [22] Application of Multiple Linear Regression and Geographically Weighted Regression Model for Prediction of PM2.5
    Narayan, Tripta
    Bhattacharya, Tanushree
    Chakraborty, Soubhik
    Konar, Swapan
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2022, 92 (02) : 217 - 229
  • [23] Evaluation of a Multiple Linear Regression Model for the Prediction of Panicle Number in Rice
    Yamauchi, Yusaku
    Hirai, Yasumaru
    Saruta, Keisuke
    Yamakawa, Takeo
    Inoue, Eiji
    Okayasu, Takashi
    Mitsuoka, Muneshi
    JOURNAL OF THE FACULTY OF AGRICULTURE KYUSHU UNIVERSITY, 2012, 57 (02): : 421 - 426
  • [24] Crystal structure prediction in orthorhombic ABO3 perovskites by multiple linear regression and artificial neural networks
    Aleksovska, Slobotka
    Dimitrovska, Sandra
    Kuzmanovski, Igor
    ACTA CHIMICA SLOVENICA, 2007, 54 (03) : 574 - 582
  • [25] Simultaneous prediction of protein secondary structure and transmembrane spans
    Leman, Julia Koehler
    Mueller, Ralf
    Karakas, Mert
    Woetzel, Nils
    Meiler, Jens
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2013, 81 (07) : 1127 - 1140
  • [26] New methods for accurate prediction of protein secondary structure
    Chandonia, JM
    Karplus, M
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 1999, 35 (03) : 293 - 306
  • [27] A Comparative Study on Filtering Protein Secondary Structure Prediction
    Kountouris, Petros
    Agathocleous, Michalis
    Promponas, Vasilis J.
    Christodoulou, Georgia
    Hadjicostas, Simos
    Vassiliades, Vassilis
    Christodoulou, Chris
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2012, 9 (03) : 731 - 739
  • [28] Protein secondary structure prediction in different structural classes
    Gromiha, MM
    Selvaraj, S
    PROTEIN ENGINEERING, 1998, 11 (04): : 249 - 251
  • [29] An evolutionary method for learning HMM structure: prediction of protein secondary structure
    Kyoung-Jae Won
    Thomas Hamelryck
    Adam Prügel-Bennett
    Anders Krogh
    BMC Bioinformatics, 8
  • [30] Performance prediction of DX-SAHP based on multiple linear regression algorithm
    Kong X.
    Liu X.
    Shang Y.
    Li Y.
    Li J.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2022, 43 (01): : 443 - 449