CO abundances in a protostellar cloud: freeze-out and desorption in the envelope and outflow of L483

被引:18
作者
Carolan, P. B. [1 ]
Redman, M. P. [1 ,2 ,3 ]
Keto, E. [4 ]
Rawlings, J. M. C. [3 ]
机构
[1] Natl Univ Ireland Galway, Ctr Astron, Galway, Ireland
[2] Dublin Inst Adv Studies, Sch Cosm Phys, Dublin 2, Ireland
[3] UCL, Dept Phys & Astron, London WC1E 6BT, England
[4] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA
关键词
radiative transfer; stars : formation; ISM : abundances; ISM : individual : L483; ISM : jets and outflows; ISM : kinematics and dynamics;
D O I
10.1111/j.1365-2966.2007.12581.x
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
CO isotopes are able to probe the different components in protostellar clouds. These components, core, envelope and outflow have distinct physical conditions, and sometimes more than one component contributes to the observed line profile. In this study, we determine how CO isotope abundances are altered by the physical conditions in the different components. We use a 3D molecular line transport code to simulate the emission of four CO isotopomers, (CO)-C-12 J = 2 --> 1, (CO)-C-13 J = 2 --> 1, (CO)-O-18 J = 2 --> 1 and (CO)-O-17 J = 2 --> 1 from the Class 0/1 object L483, which contains a cold quiescent core, an infalling envelope and a clear outflow. Our models replicate James Clerk Maxwell Telescope (JCMT) line observations with the inclusion of freeze-out, a density profile and infall. Our model profiles of (CO)-C-12 and (CO)-C-13 have a large linewidth due to a high-velocity jet. These profiles replicate the process of more abundant material being susceptible to a jet. (CO)-O-18 and (CO)-O-17 do not display such a large linewidth as they trace denser quiescent material deep in the cloud.
引用
收藏
页码:705 / 712
页数:8
相关论文
共 33 条
[1]   The degree of CO depletion in pre-stellar cores [J].
Bacmann, A ;
Lefloch, B ;
Ceccarelli, C ;
Castetes, A ;
Steinacker, J ;
Loinard, L .
ASTRONOMY & ASTROPHYSICS, 2002, 389 (01) :L6-L10
[2]   Radio spectral indices of the powering sources of outflows [J].
Beltrán, MT ;
Estalella, R ;
Anglada, G ;
Rodríguez, LF ;
Torrelles, JM .
ASTRONOMICAL JOURNAL, 2001, 121 (03) :1556-1568
[3]  
Buckle JV, 1999, ASTRON ASTROPHYS, V348, P584
[4]  
COULSON IM, 2004, MNRAS, V348, P39
[5]  
DULEY WW, 1984, INSTERSTELLAR CHEM
[6]   Small-scale structure of the circumstellar gas around the very young outflow-driving source L483-FIR [J].
Fuller, GA ;
Wootten, A .
ASTROPHYSICAL JOURNAL, 2000, 534 (02) :854-869
[7]   THE INFRARED NEBULA AND OUTFLOW IN LYNDS-483 [J].
FULLER, GA ;
LADA, EA ;
MASSON, CR ;
MYERS, PC .
ASTROPHYSICAL JOURNAL, 1995, 453 (02) :754-760
[8]   DENSE CORES IN DARK CLOUDS .7. LINE WIDTH-SIZE RELATIONS [J].
FULLER, GA ;
MYERS, PC .
ASTROPHYSICAL JOURNAL, 1992, 384 (02) :523-527
[9]   Probing the structure of molecular cloud cores:: observations and modelling of C I and C18O in HH24-26 [J].
Gibb, AG ;
Little, LT .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1998, 295 (02) :299-311
[10]   The transition from atomic to molecular hydrogen in interstellar clouds: 21 cm signature of the evolution of cold atomic hydrogen in dense clouds [J].
Goldsmith, Paul F. ;
Li, Di ;
Krco, Marko .
ASTROPHYSICAL JOURNAL, 2007, 654 (01) :273-289