An efficient quantum blind digital signature scheme

被引:17
|
作者
Lai, Hong [1 ]
Luo, Mingxing [2 ]
Pieprzyk, Josef [3 ,4 ]
Qu, Zhiguo [5 ]
Li, Shudong [6 ,7 ]
Orgun, Mehmet A. [8 ,9 ]
机构
[1] Southwest Univ, Coll Comp & Informat Sci, Chongqing 400715, Peoples R China
[2] Southwest Jiaotong Univ, Sch Informat Sci & Technol, Informat Secur & Natl Comp Grid Lab, Chengdu 610031, Sichuan, Peoples R China
[3] Queensland Univ Technol, Sch Elect Engn & Comp Sci, Brisbane, Qld 4000, Australia
[4] Polish Acad Sci, Inst Comp Sci, PL-01248 Warsaw, Poland
[5] Nanjing Univ Informat Sci & Technol, Sch Comp & Software, Nanjing 210044, Jiangsu, Peoples R China
[6] Shandong Technol & Business Univ, Coll Math & Informat Sci, Yantai 264005, Peoples R China
[7] Natl Univ Def Technol, Sch Comp Sci, Changsha 410073, Hunan, Peoples R China
[8] Macquarie Univ, Dept Comp, Sydney, NSW 2109, Australia
[9] Macau Univ Sci & Technol, Fac Informat Technol, Ave Wai Long, Macau 519020, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
blind quantum digital signature; Fibonacci-; Lucas- and Fibonacci-Lucas matrix coding; digital messages; signing-verifying modality;
D O I
10.1007/s11432-016-9061-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recently, many quantum digital signature (QDS) schemes have been proposed to authenticate the integration of a message. However, these quantum signature schemes just consider the situation for bit messages, and the signing-verifying of one-bit modality. So, their signature efficiency is very low. In this paper, we propose a scheme based on an application of Fibonacci-, Lucas- and Fibonacci-Lucas matrix coding to quantum digital signatures based on a recently proposed quantum key distribution (QKD) system. Our scheme can sign a large number of digital messages every time. Moreover, these special matrices provide a method to verify the integration of information received by the participants, to authenticate the identity of the participants, and to improve the efficiency for signing-verifying. Therefore, our signature scheme is more practical than the existing schemes.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] An efficient quantum blind digital signature scheme
    Hong LAI
    Mingxing LUO
    Josef PIEPRZYK
    Zhiguo QU
    Shudong LI
    Mehmet A.ORGUN
    ScienceChina(InformationSciences), 2017, 60 (08) : 226 - 239
  • [2] An efficient quantum blind digital signature scheme
    Hong Lai
    Mingxing Luo
    Josef Pieprzyk
    Zhiguo Qu
    Shudong Li
    Mehmet A. Orgun
    Science China Information Sciences, 2017, 60
  • [3] Efficient Quantum Blind Signature Scheme Based on Quantum Fourier Transform
    Hongfeng Zhu
    Yuanle Zhang
    Zexi Li
    International Journal of Theoretical Physics, 2021, 60 : 2311 - 2321
  • [4] Efficient Quantum Blind Signature Scheme Based on Quantum Fourier Transform
    Zhu, Hongfeng
    Zhang, Yuanle
    Li, Zexi
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2021, 60 (06) : 2311 - 2321
  • [5] Efficient and Secure Digital Signature Scheme for Post Quantum Epoch
    Iavich, Maksim
    Iashvili, Giorgi
    Gnatyuk, Sergiy
    Tolbatov, Andrii
    Mirtskhulava, Lela
    INFORMATION AND SOFTWARE TECHNOLOGIES, ICIST 2021, 2021, 1486 : 185 - 193
  • [6] Cryptanalysis of Quantum Blind Signature Scheme
    Zuo, Huijuan
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2013, 52 (01) : 322 - 329
  • [7] Cryptanalysis of Quantum Blind Signature Scheme
    Huijuan Zuo
    International Journal of Theoretical Physics, 2013, 52 : 322 - 329
  • [8] Quantum Blind Signature Scheme Based on Quantum Walk
    Li, Xue-Yang
    Chang, Yan
    Zhang, Shi-Bin
    Dai, Jin-Qiao
    Zheng, Tao
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2020, 59 (07) : 2059 - 2073
  • [9] Quantum Blind Signature Scheme Based on Quantum Walk
    Xue-Yang Li
    Yan Chang
    Shi-Bin Zhang
    Jin-Qiao Dai
    Tao Zheng
    International Journal of Theoretical Physics, 2020, 59 : 2059 - 2073
  • [10] A proposed secure digital blind signature scheme
    Wang, Jianming
    Zhan, Shixian
    Liu, Changwei
    2007 INTERNATIONAL SYMPOSIUM ON COMPUTER SCIENCE & TECHNOLOGY, PROCEEDINGS, 2007, : 194 - 198