End-to-end Autonomous Driving Perception with Sequential Latent Representation Learning

被引:10
|
作者
Chen, Jianyu [1 ]
Xu, Zhuo [1 ]
Tomizuka, Masayoshi [1 ]
机构
[1] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA
来源
2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS) | 2020年
关键词
OBJECT DETECTION; TRACKING;
D O I
10.1109/IROS45743.2020.9341020
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Current autonomous driving systems are composed of a perception system and a decision system. Both of them are divided into multiple subsystems built up with lots of human heuristics. An end-to-end approach might clean up the system and avoid huge efforts of human engineering, as well as obtain better performance with increasing data and computation resources. Compared to the decision system, the perception system is more suitable to be designed in an end-to-end framework, since it does not require online driving exploration. In this paper, we propose a novel end-to-end approach for autonomous driving perception. A latent space is introduced to capture all relevant features useful for perception, which is learned through sequential latent representation learning. The learned end-to-end perception model is able to solve the detection, tracking, localization and mapping problems altogether with only minimum human engineering efforts and without storing any maps online. The proposed method is evaluated in a realistic urban driving simulator, with both camera image and lidar point cloud as sensor inputs. The codes and videos of this work are available at our github repo(dagger) and project website(double dagger).
引用
收藏
页码:1999 / 2006
页数:8
相关论文
共 50 条
  • [21] End-to-end deep learning for reverse driving trajectory of autonomous bulldozer
    You, Ke
    Ding, Lieyun
    Jiang, Yutian
    Wu, Zhangang
    Zhou, Cheng
    KNOWLEDGE-BASED SYSTEMS, 2022, 252
  • [22] GenAD: Generative End-to-End Autonomous Driving
    Zheng, Wenzhao
    Song, Ruiqi
    Guo, Xianda
    Zhan, Chenming
    Chen, Long
    COMPUTER VISION - ECCV 2024, PT LXV, 2025, 15123 : 87 - 104
  • [23] End-to-End Autonomous Driving in CARLA: A Survey
    Al Ozaibi, Youssef
    Hina, Manolo Dulva
    Ramdane-Cherif, Amar
    IEEE ACCESS, 2024, 12 : 146866 - 146900
  • [24] End-to-end Autonomous Driving: Advancements and Challenges
    Chu, Duan-Feng
    Wang, Ru-Kang
    Wang, Jing-Yi
    Hua, Qiao-Zhi
    Lu, Li-Ping
    Wu, Chao-Zhong
    Zhongguo Gonglu Xuebao/China Journal of Highway and Transport, 2024, 37 (10): : 209 - 232
  • [25] End-to-End Autonomous Driving: Challenges and Frontiers
    Chen, Li
    Wu, Penghao
    Chitta, Kashyap
    Jaeger, Bernhard
    Geiger, Andreas
    Li, Hongyang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (12) : 10164 - 10183
  • [26] paper Exploring Contextual Representation and Multi-modality for End-to-end Autonomous Driving
    Azam, Shoaib
    Munir, Farzeen
    Kyrki, Ville
    Kucner, Tomasz Piotr
    Jeon, Moongu
    Pedrycz, Witold
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 135
  • [27] BEV-TP: End-to-End Visual Perception and Trajectory Prediction for Autonomous Driving
    Lang, Bo
    Li, Xin
    Chuah, Mooi Choo
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (11) : 18537 - 18546
  • [28] Generative Adversarial Imitation Learning for End-to-End Autonomous Driving on Urban Environments
    Karl Couto, Gustavo Claudio
    Antonelo, Eric Aislan
    2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,
  • [29] Recent Advancements in End-to-End Autonomous Driving Using Deep Learning: A Survey
    Chib, Pranav Singh
    Singh, Pravendra
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2024, 9 (01): : 103 - 118
  • [30] Towards End-to-End Chase in Urban Autonomous Driving Using Reinforcement Learning
    Kolomanski, Michal
    Sakhai, Mustafa
    Nowak, Jakub
    Wielgosz, Maciej
    INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 3, 2023, 544 : 408 - 426