Soil respiration and net carbon flux response to long-term reduced/no-tillage with and without residues in a wheat-maize cropping system

被引:23
|
作者
Zhang, Xianfeng [1 ,2 ]
Xin, Xiuli [1 ]
Yang, Wenliang [1 ]
Ding, Shijie [1 ,2 ]
Ren, Guocui [1 ,2 ]
Li, Mengrou [1 ,2 ]
Zhu, Anning [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Soil Sci, State Key Lab Soil & Sustainable Agr, Fengqiu Agroecol Expt Stn, 71 East Beijing Rd, Nanjing 210008, Peoples R China
[2] Univ Chinese Acad Sci, 19 Yuquan Rd, Beijing 100049, Peoples R China
来源
SOIL & TILLAGE RESEARCH | 2021年 / 214卷
基金
国家重点研发计划;
关键词
Reduced/no-tillage; Residue returning; Soil respiration; Net C flux; Sustainable agricultural production; ORGANIC-CARBON; NO-TILL; CONSERVATION AGRICULTURE; FERTILIZER APPLICATION; VERTICAL-DISTRIBUTION; WINTER-WHEAT; DECADES; CHINA; MANAGEMENT; NITROGEN;
D O I
10.1016/j.still.2021.105182
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Conservation tillage is not only beneficial to the improvement of integrated soil fertility and crop yield, but also plays a pivotal role in the achievement of ecological agricultural production. Based on a continuous 10-year conservation tillage experiment in the North China Plain, this paper aimed to investigate the effects on soil respiration and net carbon (C) flux in the wheat-maize cropping system, and to identify the physicochemical controls of soil respiration C emission under different tillage and residue managements. Results showed that soil respiration was generally determined by soil temperature, with the lowest and highest rates of 0.50 and 6.54 mu mol CO2-C m(-2) s(-1) in January and July, respectively. Compared with continuous tillage, the reduced/notillage without residue significantly reduced soil respiration rate and the cumulative CO2 emissions, which was principally due to the increased bulk density and decreased effective gas diffusivity according to the redundancy analysis. Whereas, over 90 % increases in soil respiration C emission could be ascribed to the accumulation of organic C, especially for the labile fraction, under residue returning than under residue removing. Additionally, the increased organic C stock in topsoil possibly accounted for the accelerated respiration C emission under reduced/no-tillage with residues. From the perspective of net C flux, it was suggested that decreasing tillage intensity generally reduced the C emissions from agricultural inputs by 11.0 %, while those were increased on average by 7.7 % through implementing residue crushing under residue returning relative to residue removing. Residue returning also increased the mean annual organic C accumulation rate by 115.2 % at the 0-20 cm depth. Collectively, each of the tillage and residue management served as small net C source, but reduced/no-tillage with residues significantly decreased the net C flux while increasing the sustainability and C productivity indexes for wheat-maize cropping system.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Long-term manuring and fertilization effects on soil organic carbon pools under a wheat-maize cropping system in North China Plain
    Gong, Wei
    Yan, Xiao-yuan
    Wang, Jing-yan
    Hu, Ting-xing
    Gong, Yuan-bo
    PLANT AND SOIL, 2009, 314 (1-2) : 67 - 76
  • [22] Dynamics of organic carbon and nitrogen in deep soil profile and crop yields under long-term fertilization in wheat-maize cropping system
    Muhammad QASWAR
    LI Dong-chu
    HUANG Jing
    HAN Tian-fu
    Waqas AHMED
    Sehrish ALI
    Muhammad Numan KHAN
    Zulqarnain Haider KHAN
    XU Yong-mei
    LI Qian
    ZHANG Hui-min
    WANG Bo-ren
    Ahmad TAUQEER
    Journal of Integrative Agriculture, 2022, 21 (03) : 826 - 839
  • [23] Dynamics of organic carbon and nitrogen in deep soil profile and crop yields under long-term fertilization in wheat-maize cropping system
    Qaswar, Muhammad
    Li Dong-chu
    Huang Jing
    Han Tian-fu
    Ahmed, Waqas
    Ali, Sehrish
    Khan, Muhammad Numan
    Khan, Zulqarnain Haider
    Xu Yong-mei
    Li Qian
    Zhang Hui-min
    Wang Bo-ren
    Tauqeer, Ahmad
    JOURNAL OF INTEGRATIVE AGRICULTURE, 2022, 21 (03) : 826 - 839
  • [24] Long-term effect of no-tillage on soil organic carbon and nitrogen in an irrigated rice-based cropping system
    Min Huang
    Xuefeng Zhou
    Fangbo Cao
    Yingbin Zou
    Paddy and Water Environment, 2016, 14 : 367 - 371
  • [25] Effect of long-term fertilization in maize-wheat cropping system on carbon mineralization in soil
    Kaur, Sarveen
    Dheri, G. S.
    Benbi, D. K.
    CARBON MANAGEMENT, 2019, 10 (06) : 523 - 532
  • [26] Long-term effect of no-tillage on soil organic carbon and nitrogen in an irrigated rice-based cropping system
    Huang, Min
    Zhou, Xuefeng
    Cao, Fangbo
    Zou, Yingbin
    PADDY AND WATER ENVIRONMENT, 2016, 14 (02) : 367 - 371
  • [27] Contribution of wheat and maize to soil organic carbon in a wheat-maize cropping system: A field and laboratory study
    Kan, Zheng-Rong
    Chen, Zhe
    Wei, Yu-Xin
    Virk, Ahmad Latif
    Bohoussou, Yves N'Dri
    Lal, Rattan
    Zhao, Xin
    Zhang, Hai-Lin
    JOURNAL OF APPLIED ECOLOGY, 2022, 59 (11) : 2716 - 2729
  • [28] Rotary tillage in rotation with plowing tillage improves soil properties and crop yield in a wheat-maize cropping system
    Zhang, Li
    Wang, Jing
    Fu, Guozhan
    Zhao, Yonggan
    PLOS ONE, 2018, 13 (06):
  • [29] No-tillage increases soil profile carbon and nitrogen under long-term rainfed cropping systems
    Varvel, G. E.
    Wilhelm, W. W.
    SOIL & TILLAGE RESEARCH, 2011, 114 (01): : 28 - 36
  • [30] Dynamic changes in soil organic carbon induced by long-term compost application under a wheat-maize double cropping system in North China
    Chen, Zixun
    Du, Zhangliu
    Wang, Guoan
    Zhang, Zeyu
    Li, Ji
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 913