One-Dimensional Interpolation Inequalities, Carlson-Landau Inequalities, and Magnetic Schrodinger Operators

被引:11
作者
Ilyin, Alexei [1 ]
Laptev, Ari [2 ,3 ]
Loss, Michael [4 ]
Zelik, Sergey [1 ,5 ]
机构
[1] MV Keldysh Appl Math Inst, Moscow 125047, Russia
[2] Univ London Imperial Coll Sci Technol & Med, London, England
[3] Inst Mittag Leffler, Djursholm, Sweden
[4] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[5] Univ Surrey, Dept Math, Guildford GU2 5XH, Surrey, England
基金
俄罗斯科学基金会; 美国国家科学基金会;
关键词
LIEB-THIRRING INEQUALITIES; BOUNDS;
D O I
10.1093/imrn/rnv156
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove refined first-order interpolation inequalities for periodic functions and give applications to various refinements of the Carlson-Landau-type inequalities and to magnetic Schrodinger operators. We also obtain Lieb-Thirring inequalities for magnetic Schrodinger operators on multi-dimensional cylinders.
引用
收藏
页码:1190 / 1222
页数:33
相关论文
共 14 条
[1]   SEMICLASSICAL BOUNDS FOR EIGENVALUES OF SCHRODINGER OPERATORS [J].
AIZENMAN, M ;
LIEB, EH .
PHYSICS LETTERS A, 1978, 66 (06) :427-429
[2]   Asymptotic expansions and extremals for the critical Sobolev and Gagliardo- Nirenberg inequalities on a torus [J].
Bartuccelli, Michele ;
Deane, Jonathan ;
Zelik, Sergey .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2013, 143 (03) :445-482
[3]  
CARLSON F., 1934, ARK MAT ASTR FYSIK B, V25B, P1
[4]   Lieb-Thirring inequalities with improved constants [J].
Dolbeault, Jean ;
Laptev, Ari ;
Loss, Michael .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2008, 10 (04) :1121-1126
[5]   A SIMPLE PROOF OF THE GENERALIZED LIEB-THIRRING INEQUALITIES IN ONE-SPACE DIMENSION [J].
EDEN, A ;
FOIAS, C .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 162 (01) :250-254
[6]  
HARDY G. H., 1936, J LOND MATH SOC, V11, P167, DOI 10.1112/jlms/s1-11.3.167
[7]  
Hardy G.H., 1960, AM MATH SOC TRANSL, V14, P1
[8]   New bounds on the Lieb-Thirring constants [J].
Hundertmark, D ;
Laptev, A ;
Weidl, T .
INVENTIONES MATHEMATICAE, 2000, 140 (03) :693-704
[9]   Best constants in multiplicative inequalities for sup-norms [J].
Ilyin, AA .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1998, 58 :84-96
[10]  
Laptev A, 1999, OPER THEOR, V108, P299