Adenylation Activity of Carboxylic Acid Reductases Enables the Synthesis of Amides

被引:72
作者
Wood, Alexander J. L. [1 ,2 ]
Weise, Nicholas J. [1 ,2 ]
Frampton, Joseph D. [1 ,2 ]
Dunstan, Mark S. [3 ]
Hollas, Michael A. [1 ,2 ]
Derrington, Sasha R. [1 ,2 ]
Lloyd, Richard C. [4 ]
Quaglia, Daniela [1 ,2 ,5 ]
Parmeggiani, Fabio [1 ,2 ]
Leys, David [1 ,2 ]
Turner, Nicholas J. [1 ,2 ]
Flitsch, Sabine L. [1 ,2 ]
机构
[1] Univ Manchester, Sch Chem, 131 Princess St, Manchester M1 7DN, Lancs, England
[2] Univ Manchester, Manchester Inst Biotechnol, Manchester M1 7DN, Lancs, England
[3] Univ Manchester, Manchester Inst Biotechnol, Manchester Ctr Synthet Biol Fine & Special Chem S, Manchester M1 7DN, Lancs, England
[4] Dr Reddys Labs EU Ltd, 410 Cambridge Sci Pk,Milton Rd, Cambridge CB4 0PE, England
[5] Univ Montreal, Chem Dept, 2900,Edouard Montpetit, Montreal, PQ H3C 3J7, Canada
基金
英国工程与自然科学研究理事会; 英国生物技术与生命科学研究理事会;
关键词
amidation; amides; amido synthetase; biocatalysis; carboxylic acid reductase; NONRIBOSOMAL PEPTIDE SYNTHETASES; BOND FORMATION; ENZYME; DOMAIN; SUPERFAMILY;
D O I
10.1002/anie.201707918
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Carboxylic acid reductases (CARs) catalyze the reduction of a broad range of carboxylic acids to aldehydes using the cofactors adenosine triphosphate and nicotinamide adenine dinucleotide phosphate, and have become attractive biocatalysts for organic synthesis. Mechanistic understanding of CARs was used to expand reaction scope, generating biocatalysts for amide bond formation from carboxylic acid and amine. CARs demonstrated amidation activity for various acids and amines. Optimization of reaction conditions, with respect to pH and temperature, allowed for the synthesis of the anticonvulsant ilepcimide with up to 96% conversion. Mechanistic studies using site-directed mutagenesis suggest that, following initial enzymatic adenylation of substrates, amidation of the carboxylic acid proceeds by direct reaction of the acyl adenylate with amine nucleophiles.
引用
收藏
页码:14498 / 14501
页数:4
相关论文
共 31 条
[1]   Amide compound synthesis by adenylation domain of bacillibactin synthetase [J].
Abe, Tomoko ;
Hashimoto, Yoshiteru ;
Sugimoto, Sayaka ;
Kobayashi, Kenta ;
Kumano, Takuto ;
Kobayashi, Michihiko .
JOURNAL OF ANTIBIOTICS, 2017, 70 (04) :435-442
[2]   Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities [J].
Akhtar, M. Kalim ;
Turner, Nicholas J. ;
Jones, Patrik R. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (01) :87-92
[3]   Emerging Enzymes for ATP Regeneration in Biocatalytic Processes [J].
Andexer, Jennifer N. ;
Richter, Michael .
CHEMBIOCHEM, 2015, 16 (03) :380-386
[4]   Dipeptide synthesis by an isolated adenylate-forming domain of non-ribosomal peptide synthetases (NRPS) [J].
Dieckmann, R ;
Neuhof, T ;
Pavela-Vrancic, M ;
von Döhren, H .
FEBS LETTERS, 2001, 498 (01) :42-45
[5]   Exploring the synthetic applicability of a new carboxylic acid reductase from Segniliparus rotundus DSM 44985 [J].
Duan, Yitao ;
Yao, Peiyuan ;
Chen, Xi ;
Liu, Xiangtao ;
Zhang, Rui ;
Feng, Jinhui ;
Wu, Qiaqing ;
Zhu, Dunming .
JOURNAL OF MOLECULAR CATALYSIS B-ENZYMATIC, 2015, 115 :1-7
[6]   Characterization of Carboxylic Acid Reductases as Enzymes in the Toolbox for Synthetic Chemistry [J].
Finnigan, William ;
Thomas, Adam ;
Cromar, Holly ;
Gough, Ben ;
Snajdrova, Radka ;
Adams, Joseph P. ;
Littlechild, Jennifer A. ;
Harmer, Nicholas J. .
CHEMCATCHEM, 2017, 9 (06) :1005-1017
[7]   Constructing Biocatalytic Cascades: In Vitro and in Vivo Approaches to de Novo Multi-Enzyme Pathways [J].
France, Scott P. ;
Hepworth, Lorna J. ;
Turner, Nicholas J. ;
Flitsch, Sabine L. .
ACS CATALYSIS, 2017, 7 (01) :710-724
[8]   One-Pot Cascade Synthesis of Mono- and Disubstituted Piperidines and Pyrrolidines using Carboxylic Acid Reductase (CAR), ω-Transaminase (ω-TA), and Imine Reductase (IRED) Biocatalysts [J].
France, Scott P. ;
Hussain, Shahed ;
Hill, Andrew M. ;
Hepworth, Lorna J. ;
Howard, Roger M. ;
Mulholland, Keith R. ;
Flitsch, Sabine L. ;
Turner, Nicholas J. .
ACS CATALYSIS, 2016, 6 (06) :3753-3759
[9]  
Gahloth D., 2017, NAT CHEM BIOL
[10]  
Galperin MY, 1997, PROTEIN SCI, V6, P2639