Algebro-geometric solutions to a hierarchy of (1+1)-dimensional and two new (2+1)-dimensional nonlinear evolution equations

被引:9
作者
Chen, JB [1 ]
机构
[1] Xuzhou Normal Univ, Dept Math, Xuzhou 221116, Peoples R China
关键词
D O I
10.1016/S0960-0779(03)00257-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Two new 2 + 1 dimensional nonlinear evolution equations are presented. The 2 + I dimensional equations closely relate with a hierarchy of 1 + 1 dimensional soliton equations. Through nonlinearizing of Lax pairs, the 1 + 1 dimensional evolution equations are decomposed to the finite dimensional integrable Hamiltonian systems. Finally by applying Riemann-Jacobi inversion technique, the algebro-geometric solutions of the 1 + 1 dimensional soliton equation hierarchy as well as two 2 + 1 dimensional equations are obtained. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:905 / 918
页数:14
相关论文
共 20 条
[1]  
Arnold V. I., 1978, Mathematical methods of classical mechanics
[2]  
BONOPELCHENKO B, 1991, PHYS LETT A, V157, P17
[3]   On quasi-periodic solutions of the 2+1 dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada equation [J].
Cao, CW ;
Wu, YT ;
Geng, XG .
PHYSICS LETTERS A, 1999, 256 (01) :59-65
[4]   From the special 2+1 Toda lattice to the Kadomtsev-Petviashvili equation [J].
Cao, CW ;
Geng, XG ;
Wu, YT .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (46) :8059-8078
[5]  
CAO CW, 1990, SCI CHINA SER A, V33, P528
[6]   Relation between the Kadometsev-Petviashvili equation and the confocal involutive system [J].
Cao, CW ;
Wu, YT ;
Geng, XG .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (08) :3948-3970
[7]  
CAO CW, 1990, J PHYS A-MATH GEN, V23, P4117, DOI 10.1088/0305-4470/23/18/017
[8]  
Cao CW., 1990, NONLINEAR PHYSICS RE, P68
[9]  
CHENG Y, 1991, PHYS LETT A, V40, P3948
[10]   Decomposition of certain nonlinear evolution equations and their quasi-periodic solutions [J].
Dai, HH ;
Geng, XG .
CHAOS SOLITONS & FRACTALS, 2002, 14 (03) :489-502