Moving solitons in the discrete nonlinear Schrodinger equation

被引:48
|
作者
Oxtoby, O. F. [1 ]
Barashenkov, I. V. [1 ]
机构
[1] Univ Cape Town, Dept Math & Appl Math, ZA-7701 Rondebosch, South Africa
来源
PHYSICAL REVIEW E | 2007年 / 76卷 / 03期
关键词
D O I
10.1103/PhysRevE.76.036603
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Using the method of asymptotics beyond all orders, we evaluate the amplitude of radiation from a moving small-amplitude soliton in the discrete nonlinear Schrodinger equation. When the nonlinearity is of the cubic type, this amplitude is shown to be nonzero for all velocities and therefore small-amplitude solitons moving without emitting radiation do not exist. In the case of a saturable nonlinearity, on the other hand, the radiation is found to be completely suppressed when the soliton moves at one of certain isolated "sliding velocities." We show that a discrete soliton moving at a general speed will experience radiative deceleration until it either stops and remains pinned to the lattice or-in the saturable case-locks, metastably, onto one of the sliding velocities. When the soliton's amplitude is small, however, this deceleration is extremely slow; hence, despite losing energy to radiation, the discrete soliton may spend an exponentially long time traveling with virtually unchanged amplitude and speed.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] STOCHASTIC ACCELERATION OF SOLITONS FOR THE NONLINEAR SCHRODINGER EQUATION
    Abou Salem, Walid K.
    Sulem, Catherine
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2009, 41 (01) : 117 - 152
  • [32] On the reflection of solitons of the cubic nonlinear Schrodinger equation
    Katsaounis, Theodoros
    Mitsotakis, Dimitrios
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (03) : 1013 - 1018
  • [33] Symmetries of the discrete nonlinear Schrodinger equation
    Heredero, RH
    Levi, D
    Winternitz, P
    THEORETICAL AND MATHEMATICAL PHYSICS, 2001, 127 (03) : 729 - 737
  • [34] Nonequilibrium discrete nonlinear Schrodinger equation
    Iubini, Stefano
    Lepri, Stefano
    Politi, Antonio
    PHYSICAL REVIEW E, 2012, 86 (01):
  • [35] Discrete nonlinear Schrodinger equation with defects
    Trombettoni, A
    Smerzi, A
    Bishop, AR
    PHYSICAL REVIEW E, 2003, 67 (01): : 166071 - 166071
  • [36] On the integrability of the discrete nonlinear Schrodinger equation
    Levi, D.
    Petrera, M.
    Scimiterna, C.
    EPL, 2008, 84 (01)
  • [37] The fractional discrete nonlinear Schrodinger equation
    Molina, Mario, I
    PHYSICS LETTERS A, 2020, 384 (08)
  • [38] Gap solitons in periodic discrete nonlinear Schrodinger equations
    Pankov, A
    NONLINEARITY, 2006, 19 (01) : 27 - 40
  • [39] Stability of discrete dark solitons in nonlinear Schrodinger lattices
    Pelinovsky, D. E.
    Kevrekidis, P. G.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (18)
  • [40] Scattering of solitons and dark solitons by potential walls in the nonlinear Schrodinger equation
    Sakaguchi, H
    Tamura, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2005, 74 (01) : 292 - 298