Moving solitons in the discrete nonlinear Schrodinger equation

被引:48
|
作者
Oxtoby, O. F. [1 ]
Barashenkov, I. V. [1 ]
机构
[1] Univ Cape Town, Dept Math & Appl Math, ZA-7701 Rondebosch, South Africa
来源
PHYSICAL REVIEW E | 2007年 / 76卷 / 03期
关键词
D O I
10.1103/PhysRevE.76.036603
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Using the method of asymptotics beyond all orders, we evaluate the amplitude of radiation from a moving small-amplitude soliton in the discrete nonlinear Schrodinger equation. When the nonlinearity is of the cubic type, this amplitude is shown to be nonzero for all velocities and therefore small-amplitude solitons moving without emitting radiation do not exist. In the case of a saturable nonlinearity, on the other hand, the radiation is found to be completely suppressed when the soliton moves at one of certain isolated "sliding velocities." We show that a discrete soliton moving at a general speed will experience radiative deceleration until it either stops and remains pinned to the lattice or-in the saturable case-locks, metastably, onto one of the sliding velocities. When the soliton's amplitude is small, however, this deceleration is extremely slow; hence, despite losing energy to radiation, the discrete soliton may spend an exponentially long time traveling with virtually unchanged amplitude and speed.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Discrete nonlocal nonlinear Schrodinger equation on graphs: Dynamics of PT-symmetric solitons in discrete networks
    Akramov, M.
    Khashimova, F.
    Matrasulov, D.
    PHYSICS LETTERS A, 2023, 457
  • [22] Bipolar solitons of the focusing nonlinear Schrodinger equation
    Liu, Zhongxuan
    Feng, Qi
    Lin, Chengyou
    Chen, Zhaoyang
    Ding, Yingchun
    PHYSICA B-CONDENSED MATTER, 2016, 501 : 117 - 122
  • [23] Formation of solitons for the modified nonlinear Schrodinger equation
    Akram, Ghazala
    Sadaf, Maasoomah
    Arshed, Saima
    Raza, Muhammad Zubair
    Alzaidi, Ahmed S. M.
    MODERN PHYSICS LETTERS B, 2024, 38 (22):
  • [24] ON ASYMPTOTIC STABILITY OF SOLITONS IN A NONLINEAR SCHRODINGER EQUATION
    Komech, Alexander
    Kopylova, Elena
    Stuart, David
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2012, 11 (03) : 1063 - 1079
  • [25] Chirped solitons in derivative nonlinear Schrodinger equation
    Justin, Mibaile
    Hubert, Malwe Boudoue
    Betchewe, Gambo
    Doka, Serge Yamigno
    Crepin, Kofane Timoleon
    CHAOS SOLITONS & FRACTALS, 2018, 107 : 49 - 54
  • [26] Direct perturbation theory for solitons of the derivative nonlinear Schrodinger equation and the modified nonlinear Schrodinger equation
    Chen, XJ
    Yang, JK
    PHYSICAL REVIEW E, 2002, 65 (06):
  • [27] Spinning solitons of a modified nonlinear Schrodinger equation
    Brihaye, Y
    Hartmann, B
    Zakrzewski, WJ
    PHYSICAL REVIEW D, 2004, 69 (08): : 4
  • [28] The existence of discrete solitons for the discrete coupled nonlinear Schrodinger system
    Huang, Meihua
    Zhou, Zhan
    BOUNDARY VALUE PROBLEMS, 2023, 2023 (01)
  • [29] Bright solitons of generalized nonlinear Schrodinger equation
    Jasinski, J
    OPTICS COMMUNICATIONS, 1999, 172 (1-6) : 325 - 333
  • [30] Nonlinear Schrodinger equation solitons on quantum droplets
    Carstea, A. S.
    Ludu, A.
    PHYSICAL REVIEW RESEARCH, 2021, 3 (03):