Moving solitons in the discrete nonlinear Schrodinger equation

被引:48
|
作者
Oxtoby, O. F. [1 ]
Barashenkov, I. V. [1 ]
机构
[1] Univ Cape Town, Dept Math & Appl Math, ZA-7701 Rondebosch, South Africa
来源
PHYSICAL REVIEW E | 2007年 / 76卷 / 03期
关键词
D O I
10.1103/PhysRevE.76.036603
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Using the method of asymptotics beyond all orders, we evaluate the amplitude of radiation from a moving small-amplitude soliton in the discrete nonlinear Schrodinger equation. When the nonlinearity is of the cubic type, this amplitude is shown to be nonzero for all velocities and therefore small-amplitude solitons moving without emitting radiation do not exist. In the case of a saturable nonlinearity, on the other hand, the radiation is found to be completely suppressed when the soliton moves at one of certain isolated "sliding velocities." We show that a discrete soliton moving at a general speed will experience radiative deceleration until it either stops and remains pinned to the lattice or-in the saturable case-locks, metastably, onto one of the sliding velocities. When the soliton's amplitude is small, however, this deceleration is extremely slow; hence, despite losing energy to radiation, the discrete soliton may spend an exponentially long time traveling with virtually unchanged amplitude and speed.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Solitons in a modified discrete nonlinear Schrodinger equation
    Molina, Mario I.
    SCIENTIFIC REPORTS, 2018, 8
  • [2] Variational approximations for traveling solitons in a discrete nonlinear Schrodinger equation
    Syafwan, M.
    Susanto, H.
    Cox, S. M.
    Malomed, B. A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (07)
  • [3] Scattering of Discrete Solitons from an Impurity in the Saturable Nonlinear Schrodinger Equation
    Tsoplefack, J.
    Palmero, F.
    Provata, A.
    Frantzeskakis, D. J.
    Cuevas-Maraver, J.
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2022, ICNAAM-2022, 2024, 3094
  • [4] Multistable solitons in the cubic-quintic discrete nonlinear Schrodinger equation
    Carretero-Gonzalez, R.
    Talley, J. D.
    Chong, C.
    Malomed, B. A.
    PHYSICA D-NONLINEAR PHENOMENA, 2006, 216 (01) : 77 - 89
  • [5] Solitons in the discrete nonpolynomial Schrodinger equation
    Maluckov, Aleksandra
    Hadzievski, Ljupco
    Malomed, Boris A.
    Salasnich, Luca
    PHYSICAL REVIEW A, 2008, 78 (01):
  • [6] Discrete Nonlinear Schrodinger Equation and Polygonal Solitons with Applications to Collapsed Proteins
    Molkenthin, Nora
    Hu, Shuangwei
    Niemi, Antti J.
    PHYSICAL REVIEW LETTERS, 2011, 106 (07)
  • [7] Gaussian solitons in nonlinear Schrodinger equation
    Nassar, AB
    Bassalo, JMF
    Alencar, PTS
    de Souza, JF
    de Oliveira, JE
    Cattani, M
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2002, 117 (08): : 941 - 946
  • [8] Solitons of the generalized nonlinear Schrodinger equation
    Tsoy, Eduard N.
    Suyunov, Laziz A.
    PHYSICA D-NONLINEAR PHENOMENA, 2020, 414
  • [9] Bragg solitons and the nonlinear Schrodinger equation
    de Sterke, CM
    Eggleton, BJ
    PHYSICAL REVIEW E, 1999, 59 (01) : 1267 - 1269
  • [10] Colliding Solitons for the Nonlinear Schrodinger Equation
    Abou Salem, W. K.
    Froehlich, J.
    Sigal, I. M.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 291 (01) : 151 - 176