Moving solitons in the discrete nonlinear Schrodinger equation

被引:49
作者
Oxtoby, O. F. [1 ]
Barashenkov, I. V. [1 ]
机构
[1] Univ Cape Town, Dept Math & Appl Math, ZA-7701 Rondebosch, South Africa
来源
PHYSICAL REVIEW E | 2007年 / 76卷 / 03期
关键词
D O I
10.1103/PhysRevE.76.036603
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Using the method of asymptotics beyond all orders, we evaluate the amplitude of radiation from a moving small-amplitude soliton in the discrete nonlinear Schrodinger equation. When the nonlinearity is of the cubic type, this amplitude is shown to be nonzero for all velocities and therefore small-amplitude solitons moving without emitting radiation do not exist. In the case of a saturable nonlinearity, on the other hand, the radiation is found to be completely suppressed when the soliton moves at one of certain isolated "sliding velocities." We show that a discrete soliton moving at a general speed will experience radiative deceleration until it either stops and remains pinned to the lattice or-in the saturable case-locks, metastably, onto one of the sliding velocities. When the soliton's amplitude is small, however, this deceleration is extremely slow; hence, despite losing energy to radiation, the discrete soliton may spend an exponentially long time traveling with virtually unchanged amplitude and speed.
引用
收藏
页数:18
相关论文
共 55 条
[1]   Methods for discrete solitons in nonlinear lattices [J].
Ablowitz, MJ ;
Musslimani, ZH ;
Biondini, G .
PHYSICAL REVIEW E, 2002, 65 (02)
[2]  
ABLOWITZ MJ, 1976, STUD APPL MATH, V55, P213
[3]  
ABLOWITZ MJ, 1976, PHYS REV E, V17, P6121
[4]  
[Anonymous], 1999, NONLINEAR ORDINARY D
[5]   Nonlinear dynamics of the Frenkel-Kontorova model [J].
Braun, OM ;
Kivshar, YS .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1998, 306 (1-2) :1-108
[6]   Localizing energy through nonlinearity and discreteness [J].
Campbell, DK ;
Flach, S ;
Kivshar, YS .
PHYSICS TODAY, 2004, 57 (01) :43-49
[7]   Discrete diffraction and spatial gap solitons in photovoltaic LiNbO3 waveguide arrays [J].
Chen, F ;
Stepic, M ;
Rüter, CE ;
Runde, D ;
Kip, D ;
Shandarov, V ;
Manela, O ;
Segev, M .
OPTICS EXPRESS, 2005, 13 (11) :4314-4324
[8]   Discretizing light behaviour in linear and nonlinear waveguide lattices [J].
Christodoulides, DN ;
Lederer, F ;
Silberberg, Y .
NATURE, 2003, 424 (6950) :817-823
[9]   Motion of discrete solitons assisted by nonlinearity management [J].
Cuevas, J ;
Malomed, BA ;
Kevrekidis, PG .
PHYSICAL REVIEW E, 2005, 71 (06)
[10]   Discrete soliton collisions in a waveguide array with saturable nonlinearity [J].
Cuevas, J. ;
Eilbeck, J. C. .
PHYSICS LETTERS A, 2006, 358 (01) :15-20