Sensitivity to crystal stacking in low-energy electron microscopy

被引:2
|
作者
Jugovac, Matteo [1 ,2 ]
Mentes, Tevfik Onur [3 ]
Genuzio, Francesca [3 ]
Lachnitt, Jan [4 ]
Feyer, Vitaliy [2 ,5 ,6 ]
Flege, Jan Ingo [7 ]
Locatelli, Andrea [3 ]
机构
[1] Ist Struttura Mat CNR ISM CNR, I-34149 Trieste, Italy
[2] Forschungszentrum Julich, Peter Grunberg Inst PGI 6, D-52425 Julich, Germany
[3] Elettra Sincrotrone Trieste, SS 14 Km 163-5 AREA Sci Pk, I-34149 Trieste, Italy
[4] Charles Univ Prague, Fac Math & Phys, Dept Surface & Plasma Sci, V Holesoviekach 2, CZ-18000 Prague, Czech Republic
[5] Univ Duisburg Essen, Fak Phys, D-47048 Duisburg, Germany
[6] Univ Duisburg Essen, Ctr Nanointegrat Duisburg Essen CENIDE, D-47048 Duisburg, Germany
[7] Brandenburg Univ Technol Cottbus Senftenberg, Appl Phys & Semicond Spect, Konrad Zuse Str 1, D-03046 Cottbus, Germany
关键词
LEEM-I(V); Stacking fault; fcc; hcp; Ag(111); FAULT ENERGIES; GROWTH; AG;
D O I
10.1016/j.apsusc.2021.150656
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work we demonstrate the general characteristics of hcp and fcc stacking in low-energy electron reflectivity for transition metal surfaces, by following the restacking during homoepitaxial growth in real-time. For this purpose, the stacking of a model system, single-crystalline Ag islands during layer-by-layer growth at high temperature on O/W(110), is chosen. Multiple scattering calculations are used to model the relation between electron reflectivity and the crystal geometry. The changes in the electron reflectivity are shown to derive from the changes in the stacking sequence of the topmost surface layers. The results allow to distinguish between the hcp and fcc crystalline arrangements at a surface based on typical differences in the reflectivity curves, making the Ag results relevant for a variety of materials with hexagonal surface geometry. In particular, the multiplet structure within the first Bragg peak in the very low electron energy regime is identified with the fcc structure and thus it can be utilized as a fingerprint to determine the stacking sequence.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] SCANNING LOW-ENERGY ELECTRON LOSS MICROSCOPY (SLEELM)
    ELGOMATI, MM
    MATTHEW, JAD
    JOURNAL OF MICROSCOPY-OXFORD, 1987, 147 : 137 - 147
  • [22] LOW-ENERGY ELECTRON-MICROSCOPY OF SEMICONDUCTOR SURFACES
    BAUER, E
    MUNDSCHAU, M
    SWIECH, W
    TELIEPS, W
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1991, 9 (03): : 1007 - 1013
  • [23] Material surface characterization using low-energy electron microscopy and photoemission electron microscopy
    Mohanty, S. R.
    Paul, S.
    Menon, K. S. R.
    INDIAN JOURNAL OF PHYSICS, 2023, 97 (08) : 2395 - 2404
  • [24] Material surface characterization using low-energy electron microscopy and photoemission electron microscopy
    S. R. Mohanty
    S. Paul
    K. S. R. Menon
    Indian Journal of Physics, 2023, 97 : 2395 - 2404
  • [25] A HIGH-SENSITIVITY LOW-ENERGY ELECTRON DIFFRACTOMETER
    JENSEN, ET
    PALMER, RE
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1989, 60 (09): : 3065 - 3067
  • [26] ANALYSIS OF SENSITIVITY OF LOW-ENERGY ELECTRON TRANSMISSION EXPERIMENTS
    GOLDEN, DE
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1973, 44 (09): : 1339 - 1343
  • [27] ELLIPSOMETRY LOW-ENERGY ELECTRON DIFFRACTION AND FIELD ELECTRON MICROSCOPY COMBINED
    MELMED, AJ
    LAYER, HP
    KRUGER, J
    SURFACE SCIENCE, 1968, 9 (03) : 476 - &
  • [28] ELECTRON-MICROSCOPY OF A LOW STACKING-FAULT ENERGY ALLOY
    KARNTHALER, HP
    SPRING, MS
    HAZZLEDINE, PM
    ACTA METALLURGICA, 1972, 20 (03): : 459 - +
  • [29] LOW-ENERGY ELECTRON-MICROSCOPY OF NANOMETER SCALE PHENOMENA
    BAUER, E
    MUNDSCHAU, M
    SWIECH, W
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1991, 9 (02): : 403 - 408
  • [30] SELECTED AREA LOW-ENERGY ELECTRON-DIFFRACTION AND MICROSCOPY
    DELONG, A
    KOLARIK, V
    ULTRAMICROSCOPY, 1985, 17 (01) : 67 - 72