ABSENCE OF LINE FIELDS AND MANE'S THEOREM FOR NONRECURRENT TRANSCENDENTAL FUNCTIONS

被引:16
作者
Rempe, Lasse [1 ]
van Strien, Sebastian [2 ]
机构
[1] Univ Liverpool, Dept Math Sci, Liverpool L69 7ZL, Merseyside, England
[2] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
JULIA-SETS; MEROMORPHIC FUNCTIONS; HAUSDORFF DIMENSION; RATIONAL FUNCTIONS; CONFORMAL MEASURES; ERGODIC-THEORY; DYNAMICS; GEOMETRY; MAPS; RIGIDITY;
D O I
10.1090/S0002-9947-2010-05125-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f : C -> (C) over cap be a transcendental meromorphic function. Suppose that the finite part P(f)boolean AND C of the postsingular set of f is bounded, that f has no recurrent critical points or wandering domains, and that the degree of pre-poles of f is uniformly bounded. Then we show that f supports no invariant line fields on its Julia set. We prove this by generalizing two results about rational functions to the transcendental setting: a theorem of Mane (1993) about the branching of iterated preimages of disks, and a theorem of McMullen (1994) regarding the absence of invariant line fields for "measurably transitive" functions. Both our theorems extend results previously obtained by Graczyk, Kotus and Swiatek (2004).
引用
收藏
页码:203 / 228
页数:26
相关论文
共 41 条
[1]  
[Anonymous], GRUNDLEHREN MATH WIS
[2]  
[Anonymous], 1994, ANN MATH STUDIES
[3]  
Avila A, 2008, J AM MATH SOC, V21, P305
[4]  
Baker I. N., 1992, Results Math., V22, P651, DOI DOI 10.1007/BF03323112
[5]   Semihyperbolic entire functions [J].
Bergweiler, W ;
Morosawa, S .
NONLINEARITY, 2002, 15 (05) :1673-1684
[6]   ITERATION OF MEROMORPHIC FUNCTIONS [J].
BERGWEILER, W .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 29 (02) :151-188
[7]  
BERGWEILER W, 2009, ARXIV09013014
[8]  
Bergweiler W., 2006, Comput. Methods Funct. Theory, V6, P77, DOI [10.1007/BF03321119, DOI 10.1007/BF03321119]
[9]  
Bock Heinrich., 1998, AACHENER BEITRAGE MA, V23
[10]   RESEARCH PROBLEMS IN COMPLEX-ANALYSIS [J].
BRANNAN, DA ;
HAYMAN, WK .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1989, 21 :1-35