Complete regular dessins of odd prime power order

被引:9
作者
Hu, Kan [1 ,2 ]
Nedela, Roman [3 ,4 ]
Wang, Na-Er [1 ,2 ]
机构
[1] Zhejiang Ocean Univ, Sch Math Phys & Informat Sci, Zhoushan 316022, Zhejiang, Peoples R China
[2] Key Lab Oceanog Big Data Min & Applicat Zhejiang, Zhoushan 316022, Zhejiang, Peoples R China
[3] Univ West Bohemia, Dept Math, NTIS FAV, Plzen, Czech Republic
[4] Slovak Acad Sci, Math Inst, Banska Bystrica, Slovakia
基金
中国国家自然科学基金;
关键词
Graph embedding; Dessin d'enfant; Metacyclic group; COMPLETE BIPARTITE GRAPHS; EMBEDDINGS; CLASSIFICATION; HYPERMAPS;
D O I
10.1016/j.disc.2018.09.028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A dessin is a 2-cell embedding of a connected 2-coloured bipartite graph into an orientable closed surface. A dessin is regular if its group of colour- and orientation-preserving automorphisms acts regularly on the edges. In this paper we employ group-theoretic method to determine and enumerate the isomorphism classes of regular dessins with complete bipartite underlying graphs of odd prime power order. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:314 / 325
页数:12
相关论文
共 23 条
  • [1] Belyi G. V., 1979, IZV AN SSSR M, V43, P267
  • [2] GENERALISED FERMAT HYPERMAPS AND GALOIS ORBITS
    Coste, Antoine D.
    Jones, Gareth A.
    Streit, Manfred
    Wolfart, Juergen
    [J]. GLASGOW MATHEMATICAL JOURNAL, 2009, 51 : 289 - 299
  • [3] Du S. F., PREPRINT
  • [4] Regular embeddings of Kn,n where n is a power of 2.: I:: Metacyclic case
    Du, Shao-Fei
    Jones, Gareth
    Kwak, Jin Ho
    Nedela, Roman
    Skoviera, Martin
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2007, 28 (06) : 1595 - 1609
  • [5] Regular embeddings of Kn,n where n is a power of 2. II: The non-metacyclic case
    Du, Shao-Fei
    Jones, Gareth
    Kwak, Jin Ho
    Nedela, Roman
    Skoviera, Martin
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2010, 31 (07) : 1946 - 1956
  • [6] Fan W., ANN COMB, V22, P135
  • [7] The complete bipartite graphs with a unique edge-transitive embedding
    Fan, Wenwen
    Li, Cai Heng
    [J]. JOURNAL OF GRAPH THEORY, 2018, 87 (04) : 581 - 586
  • [8] Feng Y., PREPRINT
  • [9] The absolute Galois group acts faithfully on regular dessins and on Beauville surfaces
    Gonzalez-Diez, Gabino
    Jaikin-Zapirain, Andrei
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2015, 111 : 775 - 796
  • [10] Grothendieck Alexandre., 1997, Geometric galois actions, P7