Two weak solutions for some Kirchhoff-type problem with Neumann boundary condition

被引:24
作者
Chaharlang, Moloud Makvand [1 ]
Razani, Abdolrahman [1 ]
机构
[1] Imam Khomeini Int Univ, Fac Sci, Dept Pure Math, Qazvin 3414916818, Iran
关键词
Nonlocal problems; Kirchhoff-type problems; variational methods; Orlicz-Sobolev spaces; mountain pass theorem; EXISTENCE; MULTIPLICITY; DETONATION;
D O I
10.1515/gmj-2019-2077
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we prove the existence of at least two weak solutions for a Kirchhoff-type problem by using the minimum principle, the mountain pass theorem and variational methods in Orlicz-Sobolev spaces.
引用
收藏
页码:429 / 438
页数:10
相关论文
共 31 条
[1]  
[Anonymous], 1975, PURE APPL MATH
[2]  
[Anonymous], 1991, MONOGR TXB PURE APPL
[3]   Infinitely many solutions for a class of nonlinear eigenvalue problem in Orlicz-Sobolev spaces [J].
Bonanno, Gabriele ;
Bisci, Giovanni Molica ;
Radulescu, Vicentiu .
COMPTES RENDUS MATHEMATIQUE, 2011, 349 (5-6) :263-268
[4]   Arbitrarily small weak solutions for a nonlinear eigenvalue problem in Orlicz-Sobolev spaces [J].
Bonanno, Gabriele ;
Bisci, Giovanni Molica ;
Radulescu, Vicentiu .
MONATSHEFTE FUR MATHEMATIK, 2012, 165 (3-4) :305-318
[5]   Infinitely Many Solutions for a Fourth Order Singular Elliptic Problem [J].
Chaharlang, M. Makvand ;
Razani, A. .
FILOMAT, 2018, 32 (14) :5003-5010
[6]   A Fourth Order Singular Elliptic Problem Involving p-biharmonic Operator [J].
Chaharlang, Moloud Makvand ;
Razani, Abdolrahman .
TAIWANESE JOURNAL OF MATHEMATICS, 2019, 23 (03) :589-599
[7]  
Chaharlang MM, 2019, COMMUN KOREAN MATH S, V34, P155
[8]   The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions [J].
Chen, Ching-yu ;
Kuo, Yueh-cheng ;
Wu, Tsung-fang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (04) :1876-1908
[9]   Some remarks on non local elliptic and parabolic problems [J].
Chipot, M ;
Lovat, B .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (07) :4619-4627
[10]   Mountain pass type solutions for quasilinear elliptic equations [J].
Clément, P ;
García-Huidobro, M ;
Manásevich, R ;
Schmitt, K .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2000, 11 (01) :33-62