Phantom bursting is highly sensitive to noise and unlikely to account for slow bursting in β-cells:: Considerations in favor of metabolically driven oscillations

被引:21
作者
Pedersen, Morten Gram
机构
[1] Tech Univ Denmark, Dept Math, DK-2800 Lyngby, Denmark
[2] Univ Padua, Dept Informat Engn, I-35131 Padua, Italy
关键词
pancreatic islets; burst period; Stochastic fluctuations; channel sharing; calcium oscillations;
D O I
10.1016/j.jtbi.2007.05.034
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Pancreatic beta-cells show bursting electrical activity with a wide range of burst periods ranging from a few seconds, often seen in isolated cells, over tens of seconds (medium bursting), usually observed in intact islets, to several minutes. The phantom burster model [Bertram, R., Previte, J., Sherman, A., Kinard, T.A., Satin, L.S., 2000. The phantom burster model for pancreatic beta-cells. Biophys. J. 79, 2880-2892] provided a framework, which covered this span, and gave an explanation of how to obtain medium bursting combining two processes operating on different time scales. However, single cells are subjected to stochastic fluctuations in plasma membrane currents, which are likely to disturb the bursting mechanism and transform medium bursters into spikers or very fast bursters. We present a polynomial, minimal, phantom burster model and show that noise modifies the plateau fraction and lowers the burst period dramatically in phantom bursters. It is therefore unlikely that slow bursting in single cells is driven by the slow phantom bursting mechanism, but could instead be driven by oscillations in glycolysis, which we show are stable to random ion channel fluctuations. Moreover, so-called compound bursting can be converted to apparent slow bursting by noise, which could explain why compound bursting and mixed Ca2+ oscillations are seen mainly in intact islets. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:391 / 400
页数:10
相关论文
共 47 条
[1]   Glucose-stimulated oscillations in free cytosolic ATP concentration imaged in single islet β-cells -: Evidence for a Ca2+-dependent mechanism [J].
Ainscow, EK ;
Rutter, GA .
DIABETES, 2002, 51 :S162-S170
[2]   Differential patterns of glucose-induced electrical activity and intracellular calcium responses in single mouse and rat pancreatic islets [J].
Antunes, CM ;
Salgado, AP ;
Rosário, LM ;
Santos, RM .
DIABETES, 2000, 49 (12) :2028-2038
[3]   ELECTROPHYSIOLOGY OF THE PANCREATIC BETA-CELL [J].
ASHCROFT, FM ;
RORSMAN, P .
PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 1989, 54 (02) :87-143
[4]   PROPERTIES OF THE CA-ACTIVATED K+CHANNEL IN PANCREATIC BETA-CELLS [J].
ATWATER, I ;
ROSARIO, L ;
ROJAS, E .
CELL CALCIUM, 1983, 4 (5-6) :451-461
[5]   Fast exocytosis with few Ca2+ channels in insulin-secreting mouse pancreatic B cells [J].
Barg, S ;
Ma, XS ;
Eliasson, L ;
Galvanovskis, J ;
Göpel, SO ;
Obermüller, S ;
Platzer, J ;
Renström, E ;
Trus, M ;
Atlas, D ;
Striessnig, J ;
Rorsman, P .
BIOPHYSICAL JOURNAL, 2001, 81 (06) :3308-3323
[6]   Glucose-induced mixed [Ca2+]c oscillations in mouse β-cells are controlled by the membrane potential and the SERCA3 Ca2+-ATPase of the endoplasmic reticulum [J].
Beauvois, MC ;
Merezak, C ;
Jonas, JC ;
Ravier, MA ;
Henquin, JC ;
Gilon, P .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2006, 290 (06) :C1503-C1511
[7]  
BERGSTEN P, 1994, J BIOL CHEM, V269, P8749
[8]   Calcium and glycolysis mediate multiple bursting modes in pancreatic islets [J].
Bertram, R ;
Satin, L ;
Zhang, M ;
Smolen, P ;
Sherman, A .
BIOPHYSICAL JOURNAL, 2004, 87 (05) :3074-3087
[9]   A calcium-based phantom bursting model for pancreatic islets [J].
Bertram, R ;
Sherman, A .
BULLETIN OF MATHEMATICAL BIOLOGY, 2004, 66 (05) :1313-1344
[10]   A ROLE FOR CALCIUM RELEASE-ACTIVATED CURRENT (CRAC) IN CHOLINERGIC MODULATION OF ELECTRICAL-ACTIVITY IN PANCREATIC BETA-CELLS [J].
BERTRAM, R ;
SMOLEN, P ;
SHERMAN, A ;
MEARS, D ;
ATWATER, I ;
MARTIN, F ;
SORIA, B .
BIOPHYSICAL JOURNAL, 1995, 68 (06) :2323-2332