Current spin polarization of a platform molecule with compression effect

被引:3
作者
Yang, Zhi [1 ,2 ]
Sun, Feng [1 ,2 ]
Chen, Deng-Hui [1 ,2 ]
Wang, Zi-Qun [3 ]
Wang, Chuan-Kui [1 ,2 ]
Li, Zong-Liang [1 ,2 ]
Qiu, Shuai [1 ,2 ]
机构
[1] Shandong Normal Univ, Sch Phys & Elect, Shandong Key Lab Med Phys & Image Proc, Jinan 250358, Peoples R China
[2] Shandong Normal Univ, Sch Phys & Elect, Shandong Prov Engn & Tech Ctr Light Manipulat, Jinan 250358, Peoples R China
[3] Zao Zhuang Univ, Zao Zhuang 277160, Peoples R China
基金
中国国家自然科学基金;
关键词
molecular spintronics; spin-dependent transport; spin polarization; single-molecule junctions; SPINTRONICS; INTERFACE;
D O I
10.1088/1674-1056/ac4f53
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using the first-principles method, the spin-dependent transport properties of a novel platform molecule containing a freestanding molecular wire is investigated by simulating the spin-polarized scanning tunneling microscope experiment with Ni tip and Au substrate electrodes. Transport calculations show that the total current increases as the tip gradually approaches to the substrate, which is consistent with the conductance obtained from previous experiment. More interestingly, the spin polarization (SP) of current modulated by compression effect has the completely opposite trend to the total current. Transmission analyses reveal that the reduction of SP of current with compression process originates from the promotion of spin-down electron channel, which is controlled by deforming the molecule wire. In addition, the density of states shows that the SP of current is directly affected by the organic-ferromagnetic spinterface. The weak orbital hybridization between the Ni tip and propynyl of molecule results in high interfacial SP, whereas the breaking of the C equivalent to C triple of propynyl in favor of the Ni-C-C bond induces the strong orbital hybridization and restrains the interfacial SP. This work proposes a new way to control and design the SP of current through organic-ferromagnetic spinterface using functional molecular platform.
引用
收藏
页数:7
相关论文
共 42 条
[1]  
[Anonymous], Synopsys Quantumwise A/S
[2]   Unravelling the role of the interface for spin injection into organic semiconductors [J].
Barraud, Clement ;
Seneor, Pierre ;
Mattana, Richard ;
Fusil, Stephane ;
Bouzehouane, Karim ;
Deranlot, Cyrile ;
Graziosi, Patrizio ;
Hueso, Luis ;
Bergenti, Ilaria ;
Dediu, Valentin ;
Petroff, Frederic ;
Fert, Albert .
NATURE PHYSICS, 2010, 6 (08) :615-620
[3]   Density-functional method for nonequilibrium electron transport -: art. no. 165401 [J].
Brandbyge, M ;
Mozos, JL ;
Ordejón, P ;
Taylor, J ;
Stokbro, K .
PHYSICAL REVIEW B, 2002, 65 (16) :1654011-16540117
[4]   Theoretical Evaluation of [VIV(α-C3S5)3]2- as Nuclear-Spin-Sensitive Single-Molecule Spin Transistor [J].
Cardona-Serra, S. ;
Gaita-Arino, A. ;
Starnenova, M. ;
Sanvito, S. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2017, 8 (13) :3056-3060
[5]  
Cinchetti M, 2017, NAT MATER, V16, P507, DOI [10.1038/NMAT4902, 10.1038/nmat4902]
[6]   Molecular spintronics: the role of spin-dependent hybridization [J].
Delprat, Sophie ;
Galbiati, Marta ;
Tatay, Sergio ;
Quinard, Benoit ;
Barraud, Clement ;
Petroff, Frederic ;
Seneor, Pierre ;
Mattana, Richard .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2018, 51 (47)
[7]   Large spin rectifying and high-efficiency spin-filtering in superior molecular junction [J].
Deng, Yuan-Xiang ;
Chen, Shi-Zhang ;
Zeng, Yun ;
Zhou, Wu-Xing ;
Chen, Ke-Qiu .
ORGANIC ELECTRONICS, 2017, 50 :184-190
[8]   Giant amplification of tunnel magnetoresistance in a molecular junction: Molecular spin-valve transistor [J].
Dhungana, Kamal B. ;
Pati, Ranjit .
APPLIED PHYSICS LETTERS, 2014, 104 (16)
[9]   Spinterface: Crafting spintronics at the molecular scale [J].
Galbiati, Marta ;
Tatay, Sergio ;
Barraud, Clement ;
Dediu, Alek V. ;
Petroff, Frederic ;
Mattana, Richard ;
Seneor, Pierre .
MRS BULLETIN, 2014, 39 (07) :602-607
[10]   Recent spinterfacial studies targeted to spin manipulation in molecular spintronic devices [J].
Gu, Xian-Rong ;
Guo, Li-Dan ;
Sun, Xiang-Nan .
CHINESE PHYSICS B, 2018, 27 (10)