Ergodicity of stochastic differential equations driven by fractional Brownian motion

被引:79
作者
Hairer, M [1 ]
机构
[1] Univ Warwick, Math Res Ctr, Warwick, England
关键词
ergodicity; fractional Brownian motion; memory;
D O I
10.1214/009117904000000892
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the ergodic properties of finite-dimensional systems of SDEs driven by nondegenerate additive fractional Brownian motion with arbitrary Hurst parameter H is an element of (0, 1). A general framework is constructed to make precise the notions of "invariant measure" and "stationary state" for such a system. We then prove under rather weak dissipativity conditions that such an SIDE possesses a unique stationary solution and that the convergence rate of an arbitrary solution toward the stationary one is (at least) algebraic. A lower bound on the exponent is also given.
引用
收藏
页码:703 / 758
页数:56
相关论文
共 25 条
[1]  
[Anonymous], 1977, WAHRSCHEINLICHKEITST
[2]  
Arnold L., 1998, Springer Monographs in Mathematics
[3]   Smoothing properties of transition semigroups relative to SDEs with values in Banach spaces [J].
Cerrai, S .
PROBABILITY THEORY AND RELATED FIELDS, 1999, 113 (01) :85-114
[4]   Stochastic analysis, rough path analysis and fractional Brownian motions [J].
Coutin, L ;
Qian, ZM .
PROBABILITY THEORY AND RELATED FIELDS, 2002, 122 (01) :108-140
[5]   Invariant measures for random dynamical systems on the circle [J].
Crauel, H .
ARCHIV DER MATHEMATIK, 2002, 78 (02) :145-154
[6]  
Crauel H., 1991, Stochastics and Stochastics Reports, V37, P153, DOI 10.1080/17442509108833733
[7]  
DaPrato G., 2014, Stochastic Equations in Infinite Dimensions, V152, P493, DOI [10.1017/CBO9781107295513, 10.1017/CBO9780511666223]
[8]   Stochastic calculus for fractional Brownian motion - I. Theory [J].
Duncan, TE ;
Hu, YZ ;
Pasik-Duncan, B .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 38 (02) :582-612
[9]   Uniqueness of the invariant measure for a stochastic PDE driven by degenerate noise [J].
Eckmann, JP ;
Hairer, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 219 (03) :523-565
[10]  
Ethier S. N., 1986, MARKOV PROCESSES CHA, DOI 10.1002/9780470316658