Structural Basis of Interprotofilament Interaction and Lateral Deformation of Microtubules

被引:142
作者
Sui, Haixin [1 ,2 ,3 ]
Downing, Kenneth H. [1 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA
[2] SUNY Albany, Wadsworth Ctr, New York State Dept Hlth, Albany, NY 12201 USA
[3] SUNY Albany, Dept Biomed Sci, Sch Publ Hlth, Albany, NY 12201 USA
关键词
STAIN ELECTRON-MICROSCOPY; ALPHA-BETA-TUBULIN; 3-DIMENSIONAL STRUCTURE; PROTOFILAMENT NUMBER; CRYOELECTRON MICROSCOPY; THERMAL FLUCTUATIONS; FLEXURAL RIGIDITY; SURFACE LATTICE; UCSF CHIMERA; TAU BIND;
D O I
10.1016/j.str.2010.05.010
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The diverse functions of microtubules require stiff structures possessing sufficient lateral flexibility to enable bending with high curvature. We used cryo-electron microscopy to investigate the molecular basis for these critical mechanical properties. High-quality structural maps were used to build pseudoatomic models of microtubules containing 11-16 protofilaments, representing a wide range of lateral curvature. Protofilaments in all these microtubules were connected primarily via interprotofilament interactions between the M loops, and the H1'-S2 and H2-S3 loops. We postulate that the tolerance of the loop-loop interactions to lateral deformation provides the capacity for high-curvature bending without breaking. On the other hand, the local molecular architecture that surrounds these connecting loops contributes to the overall rigidity. Interprotofilament interactions in the seam region are similar to those in the normal helical regions, suggesting that the existence of the seam does not significantly affect the mechanical properties of microtubules.
引用
收藏
页码:1022 / 1031
页数:10
相关论文
共 60 条
[1]   MAP2 and tau bind longitudinally along the outer ridges of microtubule protofilaments [J].
Al-Bassam, J ;
Ozer, RS ;
Safer, D ;
Halpain, S ;
Milligan, RA .
JOURNAL OF CELL BIOLOGY, 2002, 157 (07) :1187-1196
[2]  
AMOS LA, 1991, J CELL SCI, P95
[3]  
ANDREU JM, 1994, J BIOL CHEM, V269, P31785
[4]   Anterograde Microtubule Transport Drives Microtubule Bending in LLC-PK1 Epithelial Cells [J].
Bicek, Andrew D. ;
Tuzel, Erkan ;
Demtchouk, Aleksey ;
Uppalapati, Maruti ;
Hancock, William O. ;
Kroll, Daniel M. ;
Odde, David J. .
MOLECULAR BIOLOGY OF THE CELL, 2009, 20 (12) :2943-2953
[5]   EFFECT OF MICROTUBULE-ASSOCIATED PROTEINS ON THE PROTOFILAMENT NUMBER OF MICROTUBULES ASSEMBLED INVITRO [J].
BOHM, KJ ;
VATER, W ;
FENSKE, H ;
UNGER, E .
BIOCHIMICA ET BIOPHYSICA ACTA, 1984, 800 (02) :119-126
[6]   Asymmetry of inner dynein arms and inter-doublet links in Chlamydomonas flagella [J].
Bui, Khanh Huy ;
Sakakibara, Hitoshi ;
Movassagh, Tandis ;
Oiwa, Kazuhiro ;
Ishikawa, Takashi .
JOURNAL OF CELL BIOLOGY, 2009, 186 (03) :437-446
[7]   NEW DATA ON THE MICROTUBULE SURFACE LATTICE [J].
CHRETIEN, D ;
WADE, RH .
BIOLOGY OF THE CELL, 1991, 71 (1-2) :161-174
[8]   Limited flexibility of the inter-protofilament bonds in microtubules assembled from pure tubulin [J].
Chrétien, D ;
Flyvbjerg, H ;
Fuller, SD .
EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 1998, 27 (05) :490-500
[9]   STRUCTURE OF GROWING MICROTUBULE ENDS - 2-DIMENSIONAL SHEETS CLOSE INTO TUBES AT VARIABLE RATES [J].
CHRETIEN, D ;
FULLER, SD ;
KARSENTI, E .
JOURNAL OF CELL BIOLOGY, 1995, 129 (05) :1311-1328
[10]   MICROTUBULAR DIVERSITY IN INSECT SPERMATOZOA - RESULTS OBTAINED WITH A NEW FIXATIVE [J].
DALLAI, R ;
AFZELIUS, BA .
JOURNAL OF STRUCTURAL BIOLOGY, 1990, 103 (02) :164-179