Sequentially Right-Like Properties on Banach Spaces

被引:4
作者
Alikhani, Morteza [1 ]
机构
[1] Univ Isfahan, Dept Math, Esfahan 81745163, Iran
关键词
Dunford-Pettis relatively compact property; Dunford-Pettis p-convergent operators; sequentially Right property; DUNFORD-PETTIS SETS; SUBSPACES; SEQUENCES; OPERATORS;
D O I
10.2298/FIL1914461A
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study first the concept of p-sequentially Right property, which is p-version of the sequentially Right property. Also, we introduce a new class of subsets of Banach spaces which is called p-Right* set and obtain the relationship between p-Right subsets and p-Right subsets of dual spaces. Furthermore, for 1 <= p < q <= infinity, we introduce the concepts of properties (SR)(p,q) and (SR*)(p,q) in order to find a condition such that every Dunford-Pettis q-convergent operator is Dunford-Pettis p-convergent. Finally, we apply these concepts and obtain some characterizations of the p-Dunford-Pettis relatively compact property of Banach spaces and their dual spaces.
引用
收藏
页码:4461 / 4474
页数:14
相关论文
共 30 条
  • [1] Albiac F, 2006, GRAD TEXTS MATH, V233, P1
  • [2] DUNFORD-PETTIS SETS IN THE SPACE OF BOCHNER INTEGRABLE FUNCTIONS
    ANDREWS, KT
    [J]. MATHEMATISCHE ANNALEN, 1979, 241 (01) : 35 - 41
  • [3] [Anonymous], 1995, CAMBRIDGE STUD ADV M
  • [4] Bator E., 1998, C MATH, V78, P1, DOI DOI 10.4064/CM-78-1-1-17
  • [5] OPERATORS HAVING WEAKLY PRECOMPACT ADJOINTS
    BATOR, EM
    LEWIS, PW
    [J]. MATHEMATISCHE NACHRICHTEN, 1992, 157 : 99 - 103
  • [6] Castillo J., 1993, Rev. Math, V6, P43
  • [7] Castillo J. M. F., ACT 2 C AN FUNC 1990, P46
  • [8] p-Converging operators and Dunford-Pettis property of order p
    Chen, Dongyang
    Chavez-Dominguez, J. Alejandro
    Li, Lei
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 461 (02) : 1053 - 1066
  • [9] SOME ISOMORPHIC PROPERTIES IN K (X; Y) AND IN PROJECTIVE TENSOR PRODUCTS
    Cilia, Raffaella
    Emmanuele, Giovanni
    [J]. COLLOQUIUM MATHEMATICUM, 2017, 146 (02) : 239 - 252
  • [10] Defant A, 1993, TENSOR NORMS OPERATO