Analyzing Markov chain Monte Carlo output

被引:4
作者
Vats, Dootika [1 ]
Robertson, Nathan [2 ]
Flegal, James M. [2 ]
Jones, Galin L. [3 ]
机构
[1] Indian Inst Technol Kanpur, Dept Math & Stat, Kanpur, Uttar Pradesh, India
[2] Univ Calif Riverside, Dept Stat, Riverside, CA 92521 USA
[3] Univ Minnesota Twin Cities, Sch Stat, Minneapolis, MN USA
基金
美国国家科学基金会;
关键词
Bayesian computation; Markov chain Monte Carlo; Monte Carlo; output analysis; stopping rules; INTRACTABLE PROBABILITY-DISTRIBUTIONS; SPECTRAL VARIANCE ESTIMATORS; GEOMETRIC ERGODICITY; CONVERGENCE-RATES; STRONG CONSISTENCY; GIBBS SAMPLERS; BATCH MEANS; HASTINGS; MCMC;
D O I
10.1002/wics.1501
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Markov chain Monte Carlo (MCMC) is a sampling-based method for estimating features of probability distributions. MCMC methods produce a serially correlated, yet representative, sample from the desired distribution. As such it can be difficult to assess when the MCMC method is producing reliable results. We present some fundamental methods for ensuring a reliable simulation experiment. In particular, we present a workflow for output analysis in MCMC providing estimators, approximate sampling distributions, stopping rules, and visualization tools. This article is categorized under: Statistical Models > Bayesian Models Statistical and Graphical Methods of Data Analysis > Markov Chain Monte Carlo (MCMC) Statistical and Graphical Methods of Data Analysis > Monte Carlo Methods
引用
收藏
页数:12
相关论文
共 65 条
[51]   WEAK CONVERGENCE AND OPTIMAL SCALING OF RANDOM WALK METROPOLIS ALGORITHMS [J].
Roberts, G. O. ;
Gelman, A. ;
Gilks, W. R. .
ANNALS OF APPLIED PROBABILITY, 1997, 7 (01) :110-120
[52]  
Roberts G.O., 2004, Probab. Surv., V1, P20, DOI [10.1214/154957804100000024, DOI 10.1214/154957804100000024]
[53]   Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms [J].
Roberts, GO ;
Tweedie, RL .
BIOMETRIKA, 1996, 83 (01) :95-110
[54]  
ROBERTSON N, 2019, ARXIV190411912
[55]   Simple confidence intervals for MCMC without CLTs [J].
Rosenthal, Jeffrey S. .
ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (01) :211-214
[57]  
ROY V, 2019, ANN REV STAT ITS APP, V7
[58]   Convergence rates and asymptotic standard errors for Markov chain Monte Carlo algorithms for Bayesian probit regression [J].
Roy, Vivekananda ;
Hobert, James P. .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2007, 69 :607-623
[59]   On Monte Carlo methods for Bayesian multivariate regression models with heavy-tailed errors [J].
Roy, Vivekananda ;
Hobert, James P. .
JOURNAL OF MULTIVARIATE ANALYSIS, 2010, 101 (05) :1190-1202
[60]   Block Gibbs Sampling for Bayesian Random Effects Models With Improper Priors: Convergence and Regeneration [J].
Tan, Aixin ;
Hobert, James P. .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2009, 18 (04) :861-878